Orthogonal Connector Routing

  • Michael Wybrow
  • Kim Marriott
  • Peter J. Stuckey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)

Abstract

Orthogonal connectors are used in a variety of common network diagrams. Most interactive diagram editors provide orthogonal connectors with some form of automatic connector routing. However, these tools use ad-hoc heuristics that can lead to strange routes and even routes that pass through other objects. We present an algorithm for computing optimal object-avoiding orthogonal connector routings where the route minimizes a monotonic function of the connector length and number of bends. The algorithm is efficient and can calculate connector routings fast enough to reroute connectors during interaction.

References

  1. 1.
    Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 446–457. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Dobkin, D.P., Gansner, E.R., Koutsofios, E., North, S.C.: Implementing a general-purpose edge router. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 262–271. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Dwyer, T., Marriott, K., Stuckey, P.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Dwyer, T., Marriott, K., Stuckey, P.: Fast node overlap removal—correction. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 446–447. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Miriyala, K., Hornick, S.W., Tamassia, R.: An incremental approach to aesthetic graph layout. In: CASE 1993, pp. 297–308. IEEE Computer Society, Los Alamitos (1993)Google Scholar
  6. 6.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Inc., Englewood Cliffs (1999)MATHGoogle Scholar
  7. 7.
    Biedl, T.C., Madden, B., Tollis, I.G.: The three-phase method: A unified approach to orthogonal graph drawing. IJCGA 10(6), 553–580 (2000)MATHMathSciNetGoogle Scholar
  8. 8.
    Lee, D., Yang, C., Wong, C.: Rectilinear paths among rectilinear obstacles. Discrete Applied Mathematics 70(3), 185–216 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. John Wiley & Sons, Inc., New York (1990)MATHGoogle Scholar
  10. 10.
    Lee, C.Y.: An algorithm for path connections and its applications. IRE Transactions on Electronic Computers EC-10(2), 346–365 (1961)Google Scholar
  11. 11.
    Wu, Y.F., Widmayer, P., Schlag, M.D.F., Wong, C.K.: Rectilinear shortest paths and minimum spanning trees in the presence of rectilinear obstacles. IEEE Transactions on Computers 36(3), 321–331 (1987)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Argyriou, E., Bekos, M., Kaufmann, M., Symvonis, A.: Two polynomial time algorithms for the metro-line crossing minimization problem. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 336–347. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Bekos, M., Kaufmann, M., Potika, K., Symvonis, A.: Line crossing minimization on metro maps. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 231–242. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Wybrow
    • 1
  • Kim Marriott
    • 1
  • Peter J. Stuckey
    • 2
  1. 1.Clayton School of Information TechnologyMonash UniversityClaytonAustralia
  2. 2.National ICT Australia, Victoria Laboratory, Department of Computer Science & Software EngineeringUniversity of MelbourneAustralia

Personalised recommendations