Removing Independently Even Crossings

  • Michael J. Pelsmajer
  • Marcus Schaefer
  • Daniel Štefankovič
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)

Abstract

We show that \({\rm cr}(G) \leq {2 {\rm iocr}(G) \choose 2}\) settling an open problem of Pach and Tóth [5,1]. Moreover, iocr(G) = cr(G) if iocr(G) ≤ 2.

References

  1. 1.
    Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)MATHGoogle Scholar
  2. 2.
    Chojnacki (Haim Hanani), C.: Über wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fundamenta Mathematicae 23, 135–142 (1934)Google Scholar
  3. 3.
    Norine, S.: Pfaffian graphs, T-joins and crossing numbers. Combinatorica 28(1), 89–98 (2008)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Pach, J., Sharir, M.: Combinatorial geometry and its algorithmic applications: The Alcalá lectures. Mathematical Surveys and Monographs, vol. 152. American Mathematical Society, Providence (2009)MATHGoogle Scholar
  5. 5.
    Pach, J., Tóth, G.: Thirteen problems on crossing numbers. Geombinatorics 9(4), 194–207 (2000)MATHMathSciNetGoogle Scholar
  6. 6.
    Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser. B 80(2), 225–246 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Pelsmajer, M.J., Schaefer, M., Stasi, D.: Strong Hanani–Tutte on the projective plane. SIAM Journal on Discrete Mathematics 23(3), 1317–1323 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. J. Combin. Theory Ser. B 97(4), 489–500 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Crossing number of graphs with rotation systems. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 3–12. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings on surfaces. European Journal of Combinatorics 30(7), 1704–1717 (2009)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Crossing numbers and parameterized complexity. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 31–36. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Odd crossing number and crossing number are not the same. Discrete Comput. Geom. 39(1), 442–454 (2008)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Székely, L.A.: A successful concept for measuring non-planarity of graphs: the crossing number. Discrete Math. 276(1-3), 331–352 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Székely, L.A.: An optimality criterion for the crossing number. Ars Math. Contemp. 1(1), 32–37 (2008)MathSciNetGoogle Scholar
  15. 15.
    Tao, T., Vu, V.: Additive combinatorics. Cambridge Studies in Advanced Mathematics, vol. 105. Cambridge University Press, Cambridge (2006)MATHGoogle Scholar
  16. 16.
    Tóth, G.: Note on the pair-crossing number and the odd-crossing number. Discrete Comput. Geom. 39(4), 791–799 (2008)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8, 45–53 (1970)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Valtr, P.: On the pair-crossing number. In: Combinatorial and Computational Geometry. Math. Sci. Res. Inst. Publ., vol. 52, pp. 569–575. Cambridge University Press, Cambridge (2005)Google Scholar
  19. 19.
    van der Holst, H.: Algebraic characterizations of outerplanar and planar graphs. European J. Combin. 28(8), 2156–2166 (2007)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael J. Pelsmajer
    • 1
  • Marcus Schaefer
    • 2
  • Daniel Štefankovič
    • 3
  1. 1.DePaul UniversityChicagoUSA
  2. 2.Illinois Institute of TechnologyChicagoUSA
  3. 3.University of RochesterRochesterUSA

Personalised recommendations