Leftist Canonical Ordering

  • Melanie Badent
  • Michael Baur
  • Ulrik Brandes
  • Sabine Cornelsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


Canonical ordering is an important tool in planar graph drawing and other applications. Although a linear-time algorithm to determine canonical orderings has been known for a while, it is rather complicated to understand and implement, and the output is not uniquely determined. We present a new approach that is simpler and more intuitive, and that computes a newly defined leftist canonical ordering of a triconnected graph which is a uniquely determined leftmost canonical ordering.


Planar Graph Outer Face Left Neighbor Singular Vertex Feasible Candidate 


  1. 1.
    Barbay, J., Aleardi, L.C., He, M., Munro, I.: Succinct Representation of Labeled Graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 316–328. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Barequet, G., Goodrich, M.T., Riley, C.: Drawing Planar Graphs with Large Vertices and Thick Edges. J. of Graph Algorithms and Applications 8(1), 3–20 (2004)MATHMathSciNetGoogle Scholar
  3. 3.
    Biedl, T.C.: Drawing Planar Partitions I: LL-Drawings and LH-Drawings. In: Proc. 14th Symp. on Computational Geometry, pp. 287–296. ACM Press, New York (1998)Google Scholar
  4. 4.
    Biedl, T.C., Kaufmann, M.: Area-Efficient Static and Incremental Graph Drawings. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Bose, P., Gudmundsson, J., Smid, M.: Constructing Plane Spanners of Bounded Degree and Low Weight. Algorithmica 42(3-4), 249–264 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brehm, E.: 3-Orientations and Schnyder 3-Tree-Decompositions. Master’s thesis, FU Berlin (2000)Google Scholar
  7. 7.
    Chiang, Y.-T., Lin, C.-C., Lu, H.-I.: Orderly Spanning Trees with Applications to Graph Encoding and Graph Drawing. In: Proc. 12th ACM–SIAM Symp. on Discrete Algorithms (SODA 2001), pp. 506–515 (2001)Google Scholar
  8. 8.
    Chrobak, M., Kant, G.: Convex Grid Drawings of 3-Connected Planar Graphs. Int. J. of Computational Geometry and Applications 7(3), 211–223 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Chrobak, M., Nakano, S.-I.: Minimum-Width Grid Drawings of Plane Graphs. Computational Geometry 11(1), 29–54 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chrobak, M., Payne, T.H.: A Linear-Time Algorithm for Drawing a Planar Graph on a Grid. Information Processing Letters 54(4), 241–246 (1995)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chuang, R.C.-N., Garg, A., He, X., Kao, M.-Y., Lu, H.-I.: Compact Encodings of Planar Graphs via Canonical Orderings and Multiple Parentheses. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 118–129. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    de Fraysseix, H., Mendez, P.O.: Regular Orientations, Arboricity, and Augmentation. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 111–118. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    de Fraysseix, H., Pach, J., Pollack, R.: Small Sets Supporting Fáry Embeddings of Planar Graphs. In: Proc. 20th ACM Symp. on the Theory of Computing (STOC 1988), pp. 426–433. ACM Press, New York (1988)Google Scholar
  14. 14.
    de Fraysseix, H., Pach, J., Pollack, R.: How to Draw a Planar Graph on a Grid. Combinatorica 10(1), 41–51 (1990)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Di Battista, G., Tamassia, R., Vismara, L.: Output-Sensitive Reporting of Disjoint Paths. Algorithmica 23(4), 302–340 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Di Giacomo, E., Didimo, W., Liotta, G.: Radial Drawings of Graphs: Geometric Constraints and Trade-offs. J. of Discrete Algorithms 6(1), 109–124 (2008)MATHCrossRefGoogle Scholar
  17. 17.
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-Constrained Drawings of Planar Graphs. Computational Geometry 30(2), 1–23 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dujmović, V., Suderman, M., Wood, D.R.: Really Straight Graph Drawings. In: GD 2004 [21], pp. 122–132Google Scholar
  19. 19.
    Erten, C., Kobourov, S.G.: Simultaneous Embedding of Planar Graphs with Few Bends. In: GD 2004 [21], pp. 195–205Google Scholar
  20. 20.
    Fößmeier, U., Kant, G., Kaufmann, M.: 2-Visibility Drawings of Planar Graphs. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 155–168. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Pach, J. (ed.): GD 2004. LNCS, vol. 3383. Springer, Heidelberg (2005)MATHGoogle Scholar
  22. 22.
    Goodrich, M.T., Wagner, C.G.: A Framework for Drawing Planar Graphs with Curves and Polylines. J. of Algorithms 37(2), 399–421 (2000)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gutwenger, C., Mutzel, P.: Planar Polyline Drawings with Good Angular Resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Harel, D., Sardas, M.: An Algorithm for Straight-Line Drawing of Planar Graphs. Algorithmica 20, 119–135 (1998)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    He, X.: On Floor-Plan of Plane Graphs. SIAM J. on Computing 28(6), 2150–2167 (1999)MATHCrossRefGoogle Scholar
  26. 26.
    He, X., Kao, M.-Y., Lu, H.-I.: Linear-Time Succinct Encodings of Planar Graphs via Canonical Orderings. SIAM J. on Discrete Mathematics 12(3), 317–325 (1999)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Kant, G.: Drawing Planar Graphs using the lmc-Ordering. Technical Report RUU-CS-92-33, Dep. of Information and Computing Sciences, Utrecht University (1992)Google Scholar
  28. 28.
    Kant, G.: Drawing Planar Graphs Using the Canonical Ordering. Algorithmica 16(4), 4–32 (1996)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kant, G.: A More Compact Visibility Representation. Int. J. of Computational Geometry and Applications 7(3), 197–210 (1997)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Kant, G., He, X.: Regular Edge Labeling of 4-Connected Plane Graphs and its Applications in Graph Drawing Problems. Theoretical Computer Science 172(1-2), 175–193 (1997)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Miura, K., Azuma, M., Nishizeki, T.: Canonical Decomposition, Realizer, Schnyder Labeling and Orderly Spanning Trees of Plane Graphs. Int. J. of Foundations of Computer Science 16(1), 117–141 (2005)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Nakano, S.-I.: Planar Drawings of Plane Graphs. IEICE Transactions on Information and Systems E83-D(3), 384–391 (2000)Google Scholar
  33. 33.
    Schnyder, W.: Embedding Planar Graphs on the Grid. In: Proc. 1st ACM–SIAM Symp. on Discrete Algorithms (SODA 1990), pp. 138–148 (1990)Google Scholar
  34. 34.
    Wada, K., Chen, W.: Linear Algorithms for a k-Partition Problem of Planar Graphs. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 324–336. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Melanie Badent
    • 1
  • Michael Baur
    • 2
  • Ulrik Brandes
    • 1
  • Sabine Cornelsen
    • 1
  1. 1.Department of Computer & Information ScienceUniversity of Konstanz 
  2. 2.Department of Computer ScienceUniversität Karlsruhe (TH) 

Personalised recommendations