Fast Edge-Routing for Large Graphs

  • Tim Dwyer
  • Lev Nachmanson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)

Abstract

To produce high quality drawings of graphs with nodes drawn as shapes it is important to find routes for the edges which do not intersect node boundaries. Recent work in this area involves finding shortest paths in a tangent-visibility graph. However, construction of the full tangent-visibility graph is expensive, at least quadratic time in the number of nodes. In this paper we explore two ideas for achieving faster edge routing using approximate shortest-path techniques.

References

  1. 1.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  2. 2.
    Bentley, J.L.: Multidimensional divide and conquer. Communications of the ACM 23(4), 214–229 (1980)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: STOC 1987: Nineteenth, New York (May 1987)Google Scholar
  4. 4.
    Dobkin, D.P., Gansner, E.R., Koutsofios, E., North, S.C.: Implementing a general-purpose edge router. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 262–271. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Dwyer, T., Marriott, K., Wybrow, M.: Integrating edge routing into force-directed layout. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 8–19. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph layout. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–241. Springer, Heidelberg (2009), http://www.csse.monash.edu.au/~tdwyer/topology.pdf CrossRefGoogle Scholar
  8. 8.
    Freivalds, K.: Curved edge routing. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 126–137. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Gansner, E.R., North, S.C.: Improved force-directed layouts. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility. SIAM Journal on Computing 20(5), 888–910 (1991)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lauther, U.: Multipole-based force approximation revisited - a simple but fast implementation using a dynamized enclosing-circle-enhanced k-d-tree. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 20–29. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three dimensions. Communications of the ACM 20(2), 87–92 (1977)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 446–457. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tim Dwyer
    • 1
  • Lev Nachmanson
    • 1
  1. 1.Microsoft ResearchRedmondUSA

Personalised recommendations