Upward Planarization Layout

  • Markus Chimani
  • Carsten Gutwenger
  • Petra Mutzel
  • Hoi-Ming Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)

Abstract

Recently, we presented a new practical method for upward crossing minimization [6], which clearly outperformed existing approaches for drawing hierarchical graphs in that respect. The outcome of this method is an upward planar representation (UPR), a planarly embedded graph in which crossings are represented by dummy vertices. However, straight-forward approaches for drawing such UPRs lead to quite unsatisfactory results. In this paper, we present a new algorithm for drawing UPRs that greatly improves the layout quality, leading to good hierarchal drawings with few crossings. We analyze its performance on well-known benchmark graphs and compare it with alternative approaches.

References

  1. 1.
    Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship diagrams. J. Syst. Software 4, 163–173 (1984)CrossRefGoogle Scholar
  2. 2.
    Di Battista, G., Pietrosanti, E., Tamassia, R., Tollis, I.G.: Automatic layout of PERT diagrams with X-PERT. In: Proc. IEEE Workshop on Visual Languages, pp. 171–176 (1989)Google Scholar
  3. 3.
    Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 31–44. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Branke, J., Leppert, S., Middendorf, M., Eades, P.: Width-restricted layering of acyclic digraphs with consideration of dummy nodes. Inf. Process. Lett. 81(2), 59–63 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Buchheim, C., Jünger, M., Leipert, S.: A fast layout algorithm for k-level graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 229–240. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.-M.: Layer-free upward crossing minimization. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 55–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu, F., Vismara, L.: Drawing directed acyclic graphs: An experimental study. Int. J. Comput. Geom. Appl. 10(6), 623–648 (2000)MATHCrossRefGoogle Scholar
  8. 8.
    Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl. 7(5-6), 303–325 (1997)MATHGoogle Scholar
  9. 9.
    Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom. 7(4), 381–401 (1992)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eiglsperger, M., Kaufmann, M., Eppinger, F.: An approach for mixed upward planarization. J. Graph Algorithms Appl. 7(2), 203–220 (2003)MathSciNetGoogle Scholar
  11. 11.
    Gansner, E., Koutsofios, E., North, S., Vo, K.-P.: A technique for drawing directed graphs. Software Pract. Exper. 19(3), 214–229 (1993)Google Scholar
  12. 12.
    Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Healy, P., Nikolov, N.S.: A branch-and-cut approach to the directed acyclic graph layering problem. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 98–109. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Healy, P., Nikolov, N.S.: How to layer a directed acyclic graph. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 16–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Nikolov, N.S., Tarassov, A.: Graph layering by promotion of nodes. Discrete Applied Mathematics 154(5), 848–860 (2006)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    OGDF – the Open Graph Drawing Framework. Technical University of Dortmund, Chair of Algorithm Engineering, http://www.ogdf.net
  17. 17.
    Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1(1), 343–353 (1986)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Sys. Man. Cyb. 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Markus Chimani
    • 1
  • Carsten Gutwenger
    • 1
  • Petra Mutzel
    • 1
  • Hoi-Ming Wong
    • 1
  1. 1.Chair for Algorithm EngineeringTU DortmundGermany

Personalised recommendations