Advertisement

Energy Dissipation Reduction of a Cardiac Event Detector in the Sub-Vt Domain By Architectural Folding

  • Joachim Neves Rodrigues
  • Omer Can Akgun
  • Puneet Acharya
  • Adolfo de la Calle
  • Yusuf Leblebici
  • Viktor Öwall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5953)

Abstract

This manuscript presents the digital hardware realization of a wavelet based event detector for cardiac pacemaker applications. The architecture of the detector is partially folded to minimize hardware cost. An energy model is applied to evaluate the energy efficiency in the sub-threshold (sub-V T ) domain. The design is synthesized in 65 nm low leakage-high threshold CMOS technology, and it is shown that folding reduces the area cost by 30.6 %. Folding decreases energy dissipation of the circuit by 14.4 % in the sub-V T regime, where the circuit dissipates 3.3 pJ per sample at V DD =0.26 V.

Keywords

Cardiac pacemaker QRS detection wavelet filterbank folding time-multiplexing sub-threshold energy model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akgun, O., Leblebici, Y.: Energy Efficiency Comparison of Asynchronous and Synchronous Circuits Operating in the Sub-Threshold Regime. J. Low Power Electronics 3(3), 320–336 (2008)CrossRefGoogle Scholar
  2. 2.
    Åström, M., Olmos, S., Sörnmo, L.: Wavelet-based event detection in implantable cardiac rhythm management devices. IEEE Trans. Biomed. Eng. 53(3) (March 2006)Google Scholar
  3. 3.
    Calhoun, B., Wang, A., Chandrakasan, A.: Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE Journal of Solid-State Circuits 40(9), 1778–1786 (2005)CrossRefGoogle Scholar
  4. 4.
    Corless, R., Gonnet, G., Hare, D., Jeffrey, D., Knuth, D.: On the LambertW function. Advances in Computational Mathematics 5(1), 329–359 (1996)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Haddad, S., Houben, R., Serdijin, W.: The evolution of pacemakers. IEEE Engineering in Medicine and Biology Magazine 25(3), 38–48 (2006)CrossRefGoogle Scholar
  6. 6.
    Kulkarni, J.P., Kim, K., Roy, K.: A 160 mV robust schmitt trigger based subthreshold SRAM. IEEE Journal of Solid-State Circuits 42(10) (2007)Google Scholar
  7. 7.
    Kwong, J., Chandrakasan, A.: Variation-driven device sizing for minimum energy sub-threshold circuits. In: Proceedings of the 2006 international symposium on Low power electronics and design, pp. 8–13. ACM, New York (2006)Google Scholar
  8. 8.
    Rodrigues, J., Olsson, L., Sörnmo, T., Öwall, V.: Digital implementation of a wavelet-based event detector for cardiac pacemakers. IEEE Transactions on Circuits and Systems I: Regular Papers 52(12), 2686–2698 (2005)CrossRefGoogle Scholar
  9. 9.
    Vittoz, E.: Low-Power Electronics Design, ch. 16. CRC Press LLC, Boca Raton (2004)Google Scholar
  10. 10.
    Wang, A., Chandrakasan, A.: A 180-mV subthreshold FFT processor using a minimum energy design methodology. IEEE Journal of Solid-State Circuits 40(1), 310–319 (2005)CrossRefGoogle Scholar
  11. 11.
    Wong, L., Hossain, S., Ta, A., Edvinsson, J., Rivas, D., Naas, H.: A very low-power cmos mixed-signal ic for implantable pacemaker applications. IEEE Journal of Solid-State Circuits 39(12), 2446–2456 (2004)CrossRefGoogle Scholar
  12. 12.
    Zhai, B., Blaauw, D., Sylvester, D., Flautner, K.: Theoretical and practical limits of dynamic voltage scaling. In: Proceedings of the 41st Annual Conference on Design Automation, pp. 868–873. ACM, New York (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joachim Neves Rodrigues
    • 1
  • Omer Can Akgun
    • 2
  • Puneet Acharya
    • 1
  • Adolfo de la Calle
    • 1
  • Yusuf Leblebici
    • 2
  • Viktor Öwall
    • 1
  1. 1.EITLund UniversityLundSweden
  2. 2.EPFLSTI-IEL-LSMLausanneSwitzerland

Personalised recommendations