Eye for an Eye: Efficient Concurrent Zero-Knowledge in the Timing Model

  • Rafael Pass
  • Wei-Lung Dustin Tseng
  • Muthuramakrishnan Venkitasubramaniam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5978)

Abstract

We present new and efficient concurrent zero-knowledge protocols in the timing model. In contrast to earlier works—which through artificially-imposed delays require every protocol execution to run at the speed of the slowest link in the network—our protocols essentially only delay messages based on the actual response time of each verifier (which can be significantly smaller).

References

  1. [Axe84]
    Axelrod, R.: The evolution of cooperation. Basic Books, New York (1984)MATHGoogle Scholar
  2. [CF01]
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. [CKP01]
    Cohen, T., Kilian, J., Petrank, E.: Responsive round complexity and concurrent zero-knowledge. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 422–441. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. [CKPR01]
    Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-knowledge requires \(\tilde\omega(\log n)\) rounds. In: STOC 2001, pp. 570–579 (2001)Google Scholar
  5. [DNS04]
    Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–898 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. [FS90]
    Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC 1990, pp. 416–426 (1990)Google Scholar
  7. [GK96]
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. Journal of Cryptology 9(3), 167–190 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. [GMR89]
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. [Gol01]
    Goldreich, O.: Foundations of Cryptography — Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  10. [Gol02]
    Goldreich, O.: Concurrent zero-knowledge with timing, revisited. In: STOC 2002, pp. 332–340 (2002)Google Scholar
  11. [KLP05]
    Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent general composition of secure protocols in the timing model. In: STOC 2005, pp. 644–653 (2005)Google Scholar
  12. [KP01]
    Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-logarithmic rounds. In: STOC 2001, pp. 560–569 (2001)Google Scholar
  13. [KPR98]
    Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on the internet. In: FOCS 1998, pp. 484–492 (1998)Google Scholar
  14. [Lin04]
    Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. [LPV09]
    Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent security: universal composability from stand-alone non-malleability. In: STOC 2009, pp. 179–188 (2009)Google Scholar
  16. [MP06]
    Micali, S., Pass, R.: Local zero knowledge. In: STOC 2006, pp. 306–315 (2006)Google Scholar
  17. [PRS02]
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS 2002, pp. 366–375 (2002)Google Scholar
  18. [PV05]
    Persiano, G., Visconti, I.: Single-prover concurrent zero knowledge in almost constant rounds. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 228–240. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. [PV08]
    Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. [RK99]
    Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–432. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. [Ros00]
    Rosen, A.: A note on the round-complexity of concurrent zero-knowledge. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 451–468. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. [Rs09]
    Rosen, A., shelat, a.: A rational defense against concurrent attacks (2009) (manuscript)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rafael Pass
    • 1
  • Wei-Lung Dustin Tseng
    • 1
  • Muthuramakrishnan Venkitasubramaniam
    • 1
  1. 1.Cornell UniversityUSA

Personalised recommendations