Efficient Rational Secret Sharing in Standard Communication Networks

  • Georg Fuchsbauer
  • Jonathan Katz
  • David Naccache
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5978)

Abstract

We propose a new methodology for rational secret sharing leading to various instantiations (in both the two-party and multi-party settings) that are simple and efficient in terms of computation, share size, and round complexity. Our protocols do not require physical assumptions or simultaneous channels, and can even be run over asynchronous, point-to-point networks.

We also propose new equilibrium notions (namely, computational versions of strict Nash equilibrium and stability with respect to trembles) and prove that our protocols satisfy them. These notions guarantee, roughly speaking, that at each point in the protocol there is a unique legal message a party can send. This, in turn, ensures that protocol messages cannot be used as subliminal channels, something achieved in prior work only by making strong assumptions on the communication network.

References

  1. 1.
    Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: 25th ACM Symposium Annual on Principles of Distributed Computing, pp. 53–62. ACM Press, New York (2006)Google Scholar
  2. 2.
    Alwen, J., Katz, J., Lindell, Y., Persiano, G., Shelat, A., Visconti, I.: Collusion-free multiparty computation in the mediated model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 524–540. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Alwen, J., Shelat, A., Visconti, I.: Collusion-free protocols in the mediated model. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 497–514. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret sharing. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 559–576. Springer, Heidelberg (2009), A full version, containing additional results: http://eprint.iacr.org/209/373 CrossRefGoogle Scholar
  5. 5.
    Blakley, G.: Safeguarding cryptographic keys. In: Proc. AFIPS National Computer Conference, vol. 48, pp. 313–317 (1979)Google Scholar
  6. 6.
    Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Dodis, Y., Rabin, T.: Cryptography and game theory. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, pp. 181–207. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard communication networks, http://eprint.iacr.org/2008/488
  10. 10.
    Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party computation. In: 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 413–422. ACM Press, New York (2008)Google Scholar
  11. 11.
    Gordon, S.D., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation (2008), http://eprint.iacr.org/2008/206
  13. 13.
    Halpern, J., Teague, V.: Rational secret sharing and multiparty computation: Extended abstract. In: 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 623–632. ACM Press, New York (2004)Google Scholar
  14. 14.
    Izmalkov, S., Lepinski, M., Micali, S.: Verifiably secure devices. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 273–301. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mechanism design. In: 46th Annual Symposium on Foundations of Computer Science (FOCS), pp. 585–595. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar
  16. 16.
    Katz, J.: Bridging game theory and cryptography: Recent results and future directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Katz, J.: Ruminations on defining rational MPC. Talk given at SSoRC, Bertinoro, Italy (2008), http://www.daimi.au.dk/~jbn/SSoRC2008/program
  18. 18.
    Kol, G., Naor, M.: Cryptography and game theory: Designing protocols for exchanging information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Kol, G., Naor, M.: Games for exchanging information. In: 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 423–432. ACM Press, New York (2008)Google Scholar
  20. 20.
    Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and coalition-safe cheap talk. In: 23rd ACM Symposium Annual on Principles of Dis- tributed Computing, pp. 1–10. ACM Press, New York (2004)Google Scholar
  21. 21.
    Lepinski, M., Micali, S., Shelat, A.: Collusion-free protocols. In: 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 543–552. ACM Press, New York (2005)Google Scholar
  22. 22.
    Lepinski, M., Micali, S., Shelat, A.: Fair-zero knowledge. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 245–263. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Lysyanskaya, A., Triandopoulos, N.: Rationality and adversarial behavior in multi-party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th Annual Symposium on Foundations of Computer Science (FOCS), pp. 120–130. IEEE, Los Alamitos (1999)Google Scholar
  26. 26.
    Miclai, S., Shelat, A.: Truly rational secret sharing. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 54–71. Springer, Heidelberg (2009)Google Scholar
  27. 27.
    Ong, S.J., Parkes, D., Rosen, A., Vadhan, S.: Fairness with an honest minority and a rational majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 36–53. Springer, Heidelberg (2009)Google Scholar
  28. 28.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Georg Fuchsbauer
    • 1
  • Jonathan Katz
    • 2
  • David Naccache
    • 1
  1. 1.École Normale Supérieure, LIENS - CNRS - INRIAParisFrance
  2. 2.University of MarylandUSA

Personalised recommendations