Ideal Hierarchical Secret Sharing Schemes

  • Oriol Farràs
  • Carles Padró
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5978)

Abstract

Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention from the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization deals with the properties of the hierarchically minimal sets of the access structure, which are the minimal qualified sets whose participants are in the lowest possible levels in the hierarchy. By using our characterization, it can be efficiently checked whether any given hierarchical access structure that is defined by its hierarchically minimal sets is ideal. We use the well known connection between ideal secret sharing and matroids and, in particular, the fact that every ideal access structure is a matroid port. In addition, we use recent results on ideal multipartite access structures and the connection between multipartite matroids and integer polymatroids. We prove that every ideal hierarchical access structure is the port of a representable matroid and, more specifically, we prove that every ideal structure in this family admits ideal linear secret sharing schemes over fields of all characteristics. In addition, methods to construct such ideal schemes can be derived from the results in this paper and the aforementioned ones on ideal multipartite secret sharing. Finally, we use our results to find a new proof for the characterization of the ideal weighted threshold access structures that is simpler than the existing one.

Keywords

Secret sharing Ideal secret sharing schemes Hierarchical secret sharing Weighted threshold secret sharing Multipartite secret sharing Multipartite matroids Integer polymatroids 

References

  1. 1.
    Beimel, A., Tassa, T., Weinreb, E.: Characterizing Ideal Weighted Threshold Secret Sharing. SIAM J. Discrete Math. 22, 360–397 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beimel, A., Weinreb, E.: Monotone Circuits for Monotone Weighted Threshold Functions. Information Processing Letters 97, 12–18 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  4. 4.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)Google Scholar
  5. 5.
    Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Math. and Combin. Comput. 9, 105–113 (1989)MathSciNetMATHGoogle Scholar
  6. 6.
    Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptology 4, 123–134 (1991)MATHGoogle Scholar
  7. 7.
    Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares of secret sharing schemes. J. Cryptology 6, 157–168 (1993)CrossRefMATHGoogle Scholar
  8. 8.
    Collins, M.J.: A Note on Ideal Tripartite Access Structures. Cryptology ePrint Archive, Report 2002/193, http://eprint.iacr.org/2002/193
  9. 9.
    Csirmaz, L.: The size of a share must be large. J. Cryptology 10, 223–231 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Farràs, O., Martí-Farré, J., Padró, C.: Ideal Multipartite Secret Sharing Schemes. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 448–465. Springer, Heidelberg (2007), http://eprint.iacr.org/2006/292 CrossRefGoogle Scholar
  11. 11.
    Herranz, J., Sáez, G.: New Results on Multipartite Access Structures. In: IEE Proceedings of Information Security, vol. 153, pp. 153–162 (2006)Google Scholar
  12. 12.
    Herzog, J., Hibi, T.: Discrete polymatroids. J. Algebraic Combin. 16, 239–268 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing any access structure. In: Proc. IEEE Globecom 1987, pp. 99–102 (1987)Google Scholar
  14. 14.
    Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. Inform. Theory 29, 35–41 (1983)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lehman, A.: A solution of the Shannon switching game. J. Soc. Indust. Appl. Math. 12, 687–725 (1964)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Martí-Farré, J., Padró, C.: On Secret Sharing Schemes, Matroids and Polymatroids. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 273–290. Springer, Heidelberg (2007), the full version of this paper is available at the Cryptology ePrint Archive, http://eprint.iacr.org/2006/077 CrossRefGoogle Scholar
  17. 17.
    Martí-Farré, J., Padró, C.: Ideal secret sharing schemes whose minimal qualified subsets have at most three participants. Des. Codes Cryptogr. 52, 1–14 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian Workshop on Information Theory, Molle, Sweden, August 1993, pp. 269–279 (1993)Google Scholar
  19. 19.
    Massey, J.L.: Some applications of coding theory in cryptography. In: Codes and Ciphers: Cryptography and Coding IV, pp. 33–47 (1995)Google Scholar
  20. 20.
    Matúš, F.: Matroid representations by partitions. Discrete Math. 203, 169–194 (1999)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Matúš, F.: Two Constructions on Limits of Entropy Functions. IEEE Trans. Inform. Theory 53, 320–330 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Morillo, P., Padró, C., Sáez, G., Villar, J.L.: Weighted Threshold Secret Sharing Schemes. Inf. Process. Lett. 70, 211–216 (1999)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Murota, K.: Discrete convex analysis. Math. Programming 83, 313–371 (1998)MathSciNetMATHGoogle Scholar
  24. 24.
    Murota, K.: Discrete convex analysis. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2003)CrossRefMATHGoogle Scholar
  25. 25.
    Ng, S.-L.: A Representation of a Family of Secret Sharing Matroids. Des. Codes Cryptogr. 30, 5–19 (2003)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ng, S.-L.: Ideal secret sharing schemes with multipartite access structures. IEE Proc.-Commun. 153, 165–168 (2006)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ng, S.-L., Walker, M.: On the composition of matroids and ideal secret sharing schemes. Des. Codes Cryptogr. 24, 49–67 (2001)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Oxley, J.G.: Matroid theory. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1992)MATHGoogle Scholar
  29. 29.
    Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inform. Theory 46, 2596–2604 (2000)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Padró, C., Sáez, G.: Correction to Secret Sharing Schemes With Bipartite Access Structure. IEEE Trans. Inform. Theory 50, 1373–1373 (2004)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Seymour, P.D.: A forbidden minor characterization of matroid ports. Quart. J. Math. Oxford Ser. 27, 407–413 (1976)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Shamir, A.: How to share a secret. Commun. of the ACM 22, 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Simmons, G.J.: How to (Really) Share a Secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  34. 34.
    Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2, 357–390 (1992)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Tassa, T.: Hierarchical Threshold Secret Sharing. J. Cryptology 20, 237–264 (2007)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Tassa, T., Dyn, N.: Multipartite Secret Sharing by Bivariate Interpolation. J. Cryptology 22, 227–258 (2009)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Oriol Farràs
    • 1
  • Carles Padró
    • 1
  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations