Advertisement

Adaptive Multiresolution Simulation of Waves in Electrocardiology

  • Raimund Bürger
  • Ricardo Ruiz-Baier
Conference paper

Abstract

A new fully adaptive multiresolution method is applied for the simulation of the complex dynamics of waves in excitable media in electrocardiology, where the membrane kinetics are given by the Aliev–Panfilov or Luo–Rudy II models. Numerical experiments show that the automatical adaptation strategy tracks the spatio-temporal pattern accurately at a substantially reduced computational cost if compared with fine-grid simulations. The nonlinear dynamics of complex multiscale patterns can thus be computed efficiently, also in the chaotic and turbulent regime which are currently beyond the frontiers of methods using regular discretizations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solit. Fract. 7, 293–301 (1996)CrossRefGoogle Scholar
  2. 2.
    Bendahmane, M., Bürger, R., Ruiz-Baier, R.: A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numer. Meth. Partial Diff. Eqns. (to appear)Google Scholar
  3. 3.
    Bendahmane, M., Bürger, R., Ruiz-Baier, R., Schneider, K.: Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems. Appl. Numer. Math. 59, 1668–1692 (2009)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bürger, R., Ruiz-Baier, R., Schneider, K.: Adaptive multiresolution methods for the simulation of waves in excitable media. J. Sci. Comput. 43, 261–290 (2010)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohen, A., Kaber, S., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comp. 72, 183–225 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Methods. In Ciarlet, P.G., and Lions, J.L. (eds.), Handbook of Numerical Analysis, vol. VII. North-Holland, Amsterdam, pp. 713–1020 (2000)Google Scholar
  7. 7.
    Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology II: Systems Physiology, Second Edition. Springer, New York (2009)MATHGoogle Scholar
  8. 8.
    Luo, C., Rudy Y.: A dynamic model of the cardiac ventricular action potential – simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1097 (1994)Google Scholar
  9. 9.
    Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. Springer, Berlin (2003)MATHGoogle Scholar
  10. 10.
    Roussel, O., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188, 493–523 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Shajahan, T.K., Sinha, S., Pandit, R.: Spiral-wave dynamics depends sensitively on inhomogeneities in mathematical models of ventricular tissue. Phys. Rev. E 75, 011929 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.CI2MA and Departamento de Ingeniería MatemáticaUniversidad de ConcepciónConcepciónChile
  2. 2.Modeling and Scientific Computing IACS-CMCSÉcole Polytechnique Fédérale de Lausanne EPFLLausanneSwitzerland

Personalised recommendations