Advertisement

Infrastructure for the Coupling of Dune Grids

  • Peter Bastian
  • Gerrit Buse
  • Oliver SanderEmail author
Conference paper

Abstract

We describe an abstract interface for the geometric coupling of finite element grids. The scope of the interface encompasses a wide range of domain decomposition techniques in use today, including nonconforming grids and grids of different dimensions. The couplings are described as sets of remote intersections, which encapsulate the relationships between pairs of elements on the coupling interface.

The abstract interface is realized in a module dune-grid-glue for the software framework dune. Several implementations of this interface exist, including one for general nonconforming couplings and a special efficient implementation for conforming interfaces. We present two numerical examples to show the flexibility of the approach.

Keywords

Contact Problem Domain Decomposition Domain Decomposition Method Richards Equation Multigrid Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE. Computing 82(2–3), 121–138 (2008)zbMATHGoogle Scholar
  2. 2.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic interface for parallel and adaptive scientific computing. Part I: Abstract framework. Computing 82(2–3), 103–119 (2008)zbMATHGoogle Scholar
  3. 3.
    Berninger, H., Kornhuber, R., Sander, O.: Fast and robust numerical solution of the Richards equation in homogeneous soil. SIAM Journal on Numerical Analysis, (2010), submittedGoogle Scholar
  4. 4.
    Eck, C.: Existenz und Regularität der Lösungen für Kontaktprobleme mit Reibung. Ph.D. thesis, Universität Stuttgart (1996)Google Scholar
  5. 5.
    Gräser, C., Sack, U., Sander, O.: Truncated nonsmooth Newton multigrid methods for convex minimization problems. In: M. Bercovier, M. Gander, R. Kornhuber, O. Widlund (eds.) Domain Decomposition Methods in Science and Engineering XVIII, LNCSE. Springer, Berlin (2009)Google Scholar
  6. 6.
    Krause, R., Sander, O.: Automatic construction of boundary parametrizations for geometric multigrid solvers. Comp. Vis. Sci. 9, 11–22 (2006)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications (1999)Google Scholar
  8. 8.
    Sander, O.: A fast solver for finite deformation contact problems. Tech. Rep. 319, DFG Research Center Matheon (2006)Google Scholar
  9. 9.
    Sander, O.: Multidimensional coupling in a human knee model. Ph.D. thesis, Freie Universität Berlin (2008)Google Scholar
  10. 10.
    Wohlmuth, B., Krause, R.: Monotone methods on nonmatching grids for nonlinear contact problems. SIAM J. Sci. Comp. 25(1), 324–347 (2003)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Universität HeidelbergHeidelbergGermany
  2. 2.Technische Universität MünchenMünchenGermany
  3. 3.Freie Universität BerlinBerlinGermany

Personalised recommendations