Advertisement

Knowledge-Based Discrimination in Alzheimer’s Disease

  • Simon Duchesne
  • Burt Crépeault
  • Carol Hudon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5853)

Abstract

Our goal is to propose a methodology to integrate clinical, cognitive, genetic and neuroimaging results, a disparate assembly of categorical, ordinal, and numerical data, within the context of Alzheimer’s disease (AD) research. We describe a knowledge-based, explicit decision model for the discrimination of AD subjects from normal controls (CTRL) based on a recent approach for diagnostic criteria for AD. We proceed by (a) creating a set of rules for each datum source; (b) integrating these disparate data into an information feature in the form of a binary string; and (c) using a machine learning approach based on the Hamming distance as an information similarity measure for the discrimination of probable AD from CTRL. When tested on 249 subjects from the multi-centric Alzheimer’s Disease Neuroimaging Initiative study, we reach up to 99.8% discriminative accuracy using a 9-bit information string in a series of 10-fold validation experiments. We expect this versatile approach to become useful in the identification of specific and sensitive phenotypes from large amounts of disparate data.

Keywords

Alzheimer’s disease knowledge-based model multi-source data discrimination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiner, M., et al.: The Use of MRI and PET for Clinical Diagnosis of Dementia and Investigation of Cognitive Impairment: A Consensus Report. 2005. Alzheimer’s Association (2005)Google Scholar
  2. 2.
    Lim, A., et al.: Clinico-neuropathological correlation of Alzheimer’s disease in a community-based case series. J. Am. Geriatr. Soc. 47(5), 564–569 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dubois, B., et al.: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6(8), 734–746 (2007)CrossRefGoogle Scholar
  4. 4.
    von Borczyskowski, D., et al.: Evaluation of a new expert system for fully automated detection of the Alzheimer’s dementia pattern in FDG PET. Nucl. Med. Commun. 27(9), 739–743 (2006)CrossRefGoogle Scholar
  5. 5.
    Blennow, K., de Leon, M.J., Zetterberg, H.: Alzheimer’s disease. Lancet 368(9533), 387–403 (2006)CrossRefGoogle Scholar
  6. 6.
    Beinhoff, U., et al.: Gender-specificities in Alzheimer’s disease and mildcognitive impairment. J. Neurol. 255(1), 117–122 (2008)CrossRefGoogle Scholar
  7. 7.
    Koepsell, T.D., et al.: Education, cognitive function, and severity of neuropathology in Alzheimer disease. Neurology 70(19 Pt 2), 1732–1739 (2008)CrossRefGoogle Scholar
  8. 8.
    Hamming, R.W.: Error Detecting and Error Correcting Codes. Bell System Technical Journal 26(2), 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Folstein, M.F., Folstein, S.E., McHugh, P.R.: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3), 189–198 (1975)CrossRefGoogle Scholar
  10. 10.
    Rosen, W.G., Mohs, R.C., Davis, K.L.: A new rating scale for Alzheimer’ s disease. Am. J. Psychiatry 141(11), 1356–1364 (1984)CrossRefGoogle Scholar
  11. 11.
    Wechsler, D.: WMS-R Wechsler Memory Scale - Revised Manual. The Psychological Corporation, Harcourt Brace Jovanovich, Inc., New York (1987)Google Scholar
  12. 12.
    Jack, C.R.: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)CrossRefGoogle Scholar
  13. 13.
    Hsu, Y.Y., et al.: Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia. J. Magn. Reson. Imaging 16(3), 305–310 (2002)CrossRefGoogle Scholar
  14. 14.
    Ohm, T.G., et al.: Apolipoprotein E isoforms and the development of low and high Braak stages of Alzheimer’s disease-related lesions. Acta Neuropathol. 98(3), 273–280 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Simon Duchesne
    • 1
    • 2
  • Burt Crépeault
    • 1
  • Carol Hudon
    • 1
    • 3
  1. 1.Centre de Recherche Université Laval – Robert GiffardCanada
  2. 2.Département de radiologieUniversité LavalCanada
  3. 3.École de PsychologieUniversité LavalCanada

Personalised recommendations