Advertisement

Earth Rotation

  • Florian SeitzEmail author
  • Harald Schuh
Chapter

Abstract

The rotation of the Earth varies continuously. Its rotation axis changes its orientation with respect to both a space-fixed and an Earth-fixed reference system, and the angular velocity of the rotation fluctuates with time. The knowledge and therewith the continuous observation of Earth rotation variations is important for various reasons. It is fundamental for the realisation of time systems, the accurate determination of reference frames and precise navigation by providing the link between an Earth-fixed and a space-fixed coordinate system. Moreover, time series of Earth rotation parameters are of great interest for various disciplines of geosciences and astronomy since their changes are related to gravitational and geodynamic processes in the Earth system. In this way, Earth rotation monitoring contributes significantly to the understanding of the dynamics of the Earth system and the interactions between its individual components, e.g. the exchange of angular momentum between atmosphere, ocean and solid Earth, or the coupling mechanism between the Earth’s core and mantle. Today the metrological basis for this highly interdisciplinary research is provided by precise space geodetic techniques such as Very Long Baseline Interferometry (VLBI), Satellite/Lunar Laser Ranging (SLR/LLR), Global Navigation Satellite Systems (GNSS) and ring laser gyroscopes.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Very Long Baseline Interferometry Earth Rotation Polar Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors would like to express their gratitude to Urs Hugentobler from the Technische Universität München, Germany, and to Aleksander Brzezinski from the Polish Academy of Sciences, Warsaw, Poland, whose comments on the manuscript were very helpful and substantially improved the content of this chapter.

References

  1. Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B. and Boucher, C. (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res., 112, 10.1029/2007JB004949Google Scholar
  2. Aoki, S., Guinot, B., Kaplan, G.H., Kinoshita, H., McCarthy, D.D. and Seidelmann, P.K. (1982) The new definition of universal time. Astron. Astrophys., 105, 359–361Google Scholar
  3. Aoki, S. and Kinoshita, H. (1983) Note on the relation between the equinox and Guinot’s nonrotating origin. Celest. Mech. Dyn. Astr., 29, 335–360CrossRefGoogle Scholar
  4. Barnes, R.T.H., Hide, R.H., White, A.A. and Wilson, C.A. (1983) Atmospheric angular momentum fluctuations, length of day changes and polar motion. Proc. R. Soc. Lon., 387, 31–73CrossRefGoogle Scholar
  5. Beutler, G. (2005) Methods of Celestial Mechanics I: Physical, Mathematical and Numerical Principles. Springer, BerlinGoogle Scholar
  6. BIPM (2007) Director’s Report on the Activity and Management of the International Bureau of Weights and Measures, Bureau International des Poids et Mesures, sévres CedexGoogle Scholar
  7. Bizouard, C. and Gambis, D. (2009) The combined solution C04 for Earth Orientation Parameters consistent with International Terrestrial Reference Frame 2005. In: Drewes, H. (ed) Geodetic Reference Frames. IAG Symposia 134, Springer, BerlinGoogle Scholar
  8. Boehm, J., Heinkelmann, R., Mendes Cerveira, J.P., Pany, A. and Schuh, H. (2009) Atmospheric loading corrections at the observation level in VLBI analysis, J. Geodesy, 83, 1107–1113Google Scholar
  9. Brzezinski, A. (1992) Polar motion excitation by variations of the effective angular momentum function: considerations concerning deconvolution problem. manuscripta geodaetica, 17, 3–20Google Scholar
  10. Brzezinski, A. (2001) Diurnal and subdiurnal terms of nutation: a simple theoretical model for a nonrigid Earth. In: Capitaine, N. (ed) Proceedings of the Journées Systémes de Référence Spatiotemporels 2000, Paris, pp. 243–251Google Scholar
  11. Brzezinski, A. and Nastula, J. (2000) Oceanic excitation of the Chandler wobble. Adv. Space Res., 30(2), 195–200CrossRefGoogle Scholar
  12. Capitaine, N. (2002) Comparison of ‘old’ and ‘new’ concepts: the Celestial Intermediate Pole and Earth orientation parameters. In: Capitatine, N., Gambis, D., McCarthy, D.D., Petit, G., Ray, J., Richter, B., Rothacher, M., Standish, E.M. and Vondrak, J. (eds) Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions, IERS Technical Note 29, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, pp. 35–44Google Scholar
  13. Capitaine, N. (2004) Oppolzer terms: a review, FGS Workshop on ‘Ring Laser Gyroscopes and Earth Rotation’, WettzellGoogle Scholar
  14. Capitaine, N. (2008) Definition and realization of the celestial intermediate reference system. Proc. IAU 2007, 3, 10.1017/S1743921308019583Google Scholar
  15. Capitaine, N., Chapront, J., Lambert, S. and Wallace, P. (2002) Expressions for the coordinates of the CIP and the CEO Using IAU 2000 Precession-Nutation. In: Capitatine, N., Gambis, D., McCarthy, D.D., Petit, G., Ray, J., Richter, B., Rothacher, M., Standish, E.M. and Vondrak, J. (eds) Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions, IERS Technical Note 29, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, pp. 89–91Google Scholar
  16. Chandler, S.C. (1891) On the variation of latitude I-IV. Astron. J., 11, 59–61, 65–70, 75–79, 83–86CrossRefGoogle Scholar
  17. Chandler, S.C. (1892) On the variation of latitude V-VII. Astron. J., 12, 17–22, 57–72, 97–101CrossRefGoogle Scholar
  18. Chao, B.F. (1985) On the excitation of the Earth’s polar motion. Geophys. Res. Lett., 12(8), 526–529CrossRefGoogle Scholar
  19. Chao, B.F. (1989) Length-of-day variations caused by El Nino Southern Oscillation and quasibiennial oscillation. Science, 243, 923–925CrossRefGoogle Scholar
  20. Chao, B.F. (1994) The geoid and Earth rotation. In: Vanićek, P. and Christou, N.T. (eds) Geoid and Its Geophysical Interpretations. CRC Press, Boca Raton, pp. 285–298Google Scholar
  21. Chao, B.F. (2005) On inversion for mass distribution from global (time-variable) gravity field. J. Geodyn., 39(3), 223–230CrossRefGoogle Scholar
  22. Chao, B.F. and Gross, R.S. (1987) Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes. Geophys. J. R. Astron. Soc., 91, 569–596CrossRefGoogle Scholar
  23. Chao, B.F. and Gross, R.S. (2005) Did the 26 December 2004 Sumatra, Indonesia, earthquake disrupt the Earth’s rotation as the mass media have said? EOS Trans. Amer. Geophys. Union, 86, 1–2CrossRefGoogle Scholar
  24. Chen, J.L., Wilson, C.R. and Tapley, B.D. (2005) Interannual variability of low-degree gravitational change, 1980–2002. J. Geodesy, 78, 535–543CrossRefGoogle Scholar
  25. Dehant, V., Arias, F., Bizouard, C., Bretagnon, P., Brzezinski, A., Buffett, B., Capitaine, N., Defraigne, P., de Viron, O., Feissel, M., Fliegel, H., Forte, A., Gambis, D., Getino, J., Gross, R., Herring, T., Kinoshita, H., Klioner, S., Mathews, P., Mc-Carthy, D., Moisson, X., Petrov, S., Ponte, R., Roosbeek, F., Salstein, D., Schuh, H., Seidelmann, K., Soffel, M., Souchay, J., Vondrak, J., Wahr, J., Wallace, P., Weber, R., Williams, J., Yatskiv, Y., Zharov, V. and Zhu, S. (1999) Considerations concerning the non-rigid Earth nutation theory. Celest. Mech. Dyn. Astr., 72(4), 245–310CrossRefGoogle Scholar
  26. de Viron, O., Bizouard, C., Salstein, D. and Dehant, V. (1999) Atmospheric torque on the Earth and comparison with atmospheric angular momentum variations. J. Geophys. Res., 104, 4861–4875CrossRefGoogle Scholar
  27. de Viron, O. and Dehant, V. (2003a) Tests on the validity of atmospheric torques on Earth computed from atmospheric model outputs. J. Geophys. Res., 108, 10.1029/2001JB001196Google Scholar
  28. de Viron, O. and Dehant, V. (2003b) Reliability of atmospheric torque for geodesy. In: Richter, B., Schwegmann, W. and Dick, W.R. (eds) Proceedings of the IERS Workshop on Combination Research and Global Geophysical Fluids, IERS Technical Note 30, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, pp. 125–126Google Scholar
  29. de Viron, O., Koot, L. and Dehant, V. (2005) Polar motion models: the torque approach. In: Plag, H.-P., Chao, B.F., Gross, R. and van Dam, T. (eds) Forcing of Polar Motion in the Chandler Frequency Band: A Contribution to Understanding Interannual Climate Variations, Cahiers du Centre Européen de Géodynamique et de Séismologie 24, LuxembourgGoogle Scholar
  30. de Viron, O., Ponte, R.M. and Dehant, V. (2001) Indirect effect of the atmosphere through the oceans on the Earth nutation using the torque approach. J. Geophys. Res., 106, 8841–8851CrossRefGoogle Scholar
  31. Dill, R. (2002) Der Einfluss von Sekundäreffekten auf die Rotation der Erde, C 550, Deutsche Geodätische Kommission, München (in German)Google Scholar
  32. Dong, D., Gross, R.S. and Dickey, J.O. (1996) Seasonal variations of the Earth’s gravitational field: an analysis of atmospheric pressure, ocean tidal, and surface water excitation. Geophys. Res. Lett., 23(7), 725–728CrossRefGoogle Scholar
  33. Dziewonski, A.M. and Anderson, D.L. (1981) Preliminary Reference Earth model (PREM). Phys. Earth Planet. Int., 25, 297–356CrossRefGoogle Scholar
  34. Engels, J. and Grafarend, E.W. (1999) Zwei polare geodätische Bezugssysteme: Der Referenzrahmen der mittleren Oberflächenvortizität und der Tisserand-Referenzrahmen. In: Schneider, M. (ed) 3. DFG-Rundgespräch zum Thema Bezugssysteme. Mitteilungen des Bundesamts für Kartographie und Geodäsie, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main (in German), pp. 100–109Google Scholar
  35. Euler, L. (1765) Du mouvement de rotation des corps solides autour d’un axe variable. Mémoires de l’académie des sciences de Berlin, 14, 154–193Google Scholar
  36. Farrell, W. (1972) Deformation of the Earth by surface loads. Rev. Geophys. Space Phys., 10, 761–797CrossRefGoogle Scholar
  37. Feissel, M. and Mignard, F. (1998) The adoption of ICRS on 1 January 1998: meaning and consequences. Astron. Astrophys., 331, L33–L36Google Scholar
  38. Fey, A.L., Ma, C., Arias, E.F., Charlot, P., Feissel-Vernier, M., Jacobs, A.M.G.C.S., Li, J. and MacMillan, D.S. (2004) The second extension of the International Celestial Reference Frame. Astron. J., 127, 3587–3608CrossRefGoogle Scholar
  39. Fricke, W., Schwan, H. and Lederle, T. (1988) Fifth Fundamental Catalogue, Part I., Techn. Ber., Veröff. Astron. Rechen Inst., HeidelbergGoogle Scholar
  40. Fukumori, I. (2002) A partitioned Kalman filter and smoother. Mon. Weather Rev., 130, 1370–1383CrossRefGoogle Scholar
  41. Furuya, M. and Chao, B.F. (1996) Estimation of period and Q of the Chandler wobble. Geophys. J. Int., 127, 693–702CrossRefGoogle Scholar
  42. Furuya, M., Hamano, Y. and Naito, I. (1996) Quasi-periodic wind signal as a possible excitation of Chandler wobble. J. Geophys. Res., 101, 25537–25546CrossRefGoogle Scholar
  43. Gilbert, F. and Dziewonski, A.M. (1975) An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Phil. Trans. R. Soc., A278, 187–269Google Scholar
  44. Gipson, J.M. and Ma, C. (1998) Site displacement due to variation in Earth rotation. J. Geophys. Res., 103, 7337–7350CrossRefGoogle Scholar
  45. Gontier, A.M., Arias, E.F. and Barache, C. (2006) Maintenance of the ICRF using the most stable sources. In: Souchay, J. and Feissel-Vernier, M. (eds) The International Celestial Reference System and Frame, 7–19, IERS Technical Note 34, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  46. Gross, R.S. (1986) The influence of earthquakes on the Chandler wobble during 1977–1983. Geophys. J. R. Astr. Soc., 85, 161–177CrossRefGoogle Scholar
  47. Gross, R.S. (1992) Correspondence between theory and observations of polar motion. Geophys. J. Int., 109, 162–170CrossRefGoogle Scholar
  48. Gross, R.S. (1993) The effect of ocean tides on the Earth’s rotation as predicted by the results of an ocean tide model. Geophys. Res. Lett., 20(4), 293–296CrossRefGoogle Scholar
  49. Gross, R.S. (2000) The excitation of the Chandler wobble. Geophys. Res. Lett., 27(15), 2329–2332CrossRefGoogle Scholar
  50. Gross, R.S. (2007) Earth rotation variations – Long period. In: Herring, T.A. (ed) Physical Geodesy, Treatise on Geophysics, Vol. 3. Elsevier, AmsterdamGoogle Scholar
  51. Guinot, B. (1979) Basic problems in the kinematics of the rotation of the earth. In: McCarthy, D. and Pilkington, J. (eds) Time and the Earth’s Rotation. D. Reidel, Dordrecht, pp. 7–18CrossRefGoogle Scholar
  52. Guinot, B. (2002) Comparison of ‘old’ and ‘new’ concepts: Celestial Ephemeris Origin (CEO), Terrestrial Ephemeris Origin (TEO), Earth Rotation Angle (ERA). In: Capitatine, N., Gambis, D., McCarthy, D.D., Petit, G., Ray, J., Richter, B., Rothacher, M., Standish, E.M. and Vondrak, J. (eds) Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions, IERS Technical Note 29, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, pp. 45–50Google Scholar
  53. Haas, R., Scherneck, H.-G. and Schuh, H. (1997) Atmospheric loading corrections in geodetic VLBI and determination of atmospheric loading coefficients. In: Pettersen, B.R. (ed) Proceedings of the 12th Working Meeting on European VLBI for Geodesy and Astronomy, Statens Kartverk, Hønefoss, pp. 111–121Google Scholar
  54. Hameed, S. and Currie, R.G. (1989) Simulation of the 14-month Chandler wobble climate model. Geophys. Res. Lett., 16(3), 247–250CrossRefGoogle Scholar
  55. Heiskanen, W.A. and Moritz, H. (1967) Physical Geodesy. Freeman and Co., San FranciscoGoogle Scholar
  56. Hinderer, J., Legros, H., Gire, C. and Le Mouël, J.-L. (1987) Geomagnetic secular variation, core motions and implications for the Earth’s wobbles. Phys. Earth Planet. Int., 49, 121–132CrossRefGoogle Scholar
  57. Holme, R. (1998) Electromagnetic core-mantle coupling – I. Explaining decadal changes in length of day. Geophys. J. Int., 132, 167–180CrossRefGoogle Scholar
  58. Höpfner, J. (2001) Interannual variations in length of day and atmospheric angular momentum with respect to ENSO cycles. Zeitschrift f. Vermessungswesen, 126(1), 39–49Google Scholar
  59. IERS (2008) IERS Annual Report 2006. In: Dick, W.R. und Richter, B. (Hrsg.) Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  60. Jackson, A. (1997) Time-dependency of geostrophic core surface motions. Phys. Earth Planet. Int., 103, 293–311CrossRefGoogle Scholar
  61. Jault, D., Gire, C. and Le Mouël, J.-L. (1988) Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature, 333, 353–356CrossRefGoogle Scholar
  62. Jochmann, H. (2003) Period variations of the Chandler wobble. J. Geodesy, 77, 454–458CrossRefGoogle Scholar
  63. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Wollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D. (1996) The NMC/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc., 77, 437–471CrossRefGoogle Scholar
  64. Kaplan, G.H. (2005) The IAU resolutions on astronomical reference systems, time scales, and Earth rotation models, Techn. Ber. Circular 179, United States Naval Observatory, WashingtonGoogle Scholar
  65. Kosek, W., McCarthy, D.D. and Luzum, B. (2001) El Niño impact on polar motion prediction errors. Studia Geophysica et Geodaetica, 45, 347–361CrossRefGoogle Scholar
  66. Kuehne, J., Wilson, C.R. and Johnson, S. (1996) Estimates of the Chandler wobble frequency and Q. J. Geophys. Res., 101, 13573–13580CrossRefGoogle Scholar
  67. Kusche, J. and Schrama, E. (2005) Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data. J. Geophys. Res., 110, 10.1029/2004JB003556Google Scholar
  68. Lambeck, K. (1980) The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  69. Lenhardt, H. and Groten, E. (1985) Chandler wobble parameters from BIH and ILS data. Manuscripta Geodaetica, 10, 296–305Google Scholar
  70. Liao, D.C. and Greiner-Mai, H. (1999) A new ΔLOD series in monthly intervals (1892.0–1997.0) and its comparison with other geophysical results. J. Geodesy, 73, 466–477CrossRefGoogle Scholar
  71. Lieske, J.H., Lederle, T., Fricke, W. and Morando, B. (1977) Expression for the precession quantities based upon the IAU (1976) system of astronomical constants. Astron. Astrophys., 58, 1–16Google Scholar
  72. Ma, C., Arias, E.F., Eubanks, T.M., Fey, A.L., Gontier, A.-M., Jacobs, C.S., Sovers, O.J., Archinal, B.A. and Charlot, P. (1998) The International Celestial Reference Frame as realized by Very Long Baseline Interferometry. Astron. J., 116, 516–546CrossRefGoogle Scholar
  73. Manabe, S., Sato, T., Sakai, S. and Yokoyama, K. (1991) Atmospheric loading effects on VLBI observations. Proceedings of the AGU Chapman Conference on Geodetic VLBI, NOAA Technical Report NOS 137 NGS 49, Rockville, pp. 111–122Google Scholar
  74. Marchenko, A.N. and Schwintzer, P. (2003) Estimation of the Earth’s tensor of inertia from recent global gravity field solutions. J. Geodesy, 76, 495–509CrossRefGoogle Scholar
  75. Mathews, P.M., Buffet, B.A., Herring, T.A. and Shapiro, I.I. (1991) Forced nutations of the Earth: influences of inner core dynamics, part 2: numerical results and comparisons. J. Geophys. Res., 96, 8243–8257CrossRefGoogle Scholar
  76. Mathews, P.M., Herring, T.A. and Buffet, B.A. (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J. Geophys. Res., 107, 10.1029/2001JB000390Google Scholar
  77. Mendes Cerveira, P.J., Boehm, J., Schuh, H., Klügel, T., Velikoseltsev, A., Schreiber, U. and Brzezinski, A. (2009) Earth rotation observed by Very Long Baseline Interferometry and ring laser. Pure Appl. Geophys., 166, 1499–1517Google Scholar
  78. McCarthy, D.D. and Capitaine, N. (2002) Practical Consequences of Resolution B1.6 ’IAU2000 Precession-Nutation Model’, Resolution B1.7 ‘Definition of Celestial Intermediate Pole’, Resolution B1.8 ‘Definition and Use of Celestial and Terrestrial Ephemeris Origin’. In: Capitatine, N., Gambis, D., McCarthy, D.D., Petit, G., Ray, J., Richter, B., Rothacher, M., Standish, E.M. and Vondrak, J. (eds) Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions, IERS Technical Note 29, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, pp. 9–17Google Scholar
  79. McCarthy, D.D. and Petit, G. (eds) (2004) IERS Conventions 2003, IERS Technical Note 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  80. McClure, P. (1973) Diurnal polar motion, Techn. Ber. GSFC Rep. X-529-73-259, Goddard Space Flight Cent., GreenbeltGoogle Scholar
  81. Milly, P.C. and Shmakin, A.B. (2002) Global modeling of land water and energy balances. Part I: the land dynamics (LaD) model. J. Hydrometeorol., 3(3), 283–299CrossRefGoogle Scholar
  82. Milne, G.A. and Mitrovica, J.X. (1998) Postglacial sea-level change on a rotating Earth. Geophys. J. Int., 133, 1–19CrossRefGoogle Scholar
  83. Molodensky, M.S. (1961) The theory of nutation and diurnal Earth tides. Comm. Obs. R. Belgique, 142, 25–56Google Scholar
  84. Moritz, H. and Mueller, I.I. (1987) Earth rotation. Theory and Observation. Ungar, New YorkGoogle Scholar
  85. Morrison, L.V. and Stephenson, F.R. (1998) The sands of time and tidal friction. In: Brosche, P., Dick, W.R., Schwarz, O. and Wielen, R. (eds) The Message of the Angles – Astrometry from 1798 to 1998, Thun-Verlag, Frankfurt am Main, pp. 100–113Google Scholar
  86. Munk, W.H. and MacDonald, G.J.F. (1960) The Rotation of the Earth. A Geophysical Discussion. Cambridge University Press, CambridgeGoogle Scholar
  87. Okubo, S. (1982) Is the Chandler period variable? Geophys. J. R. Astr. Soc., 71, 629–646CrossRefGoogle Scholar
  88. Ponsar, S., Dehant, V., Holme, R., Jault, D., Pais, A. and Hoolst, T.V. (2002) The core and fluctuations in the Earth’s rotation. In: Dehant, V., Creager, K.C., Karato, S. and Zatman, S. (eds) Earth’s Core: Dynamics, Structure, Rotation. Geodynamics Series 31, American Geophysical Union, Washington, pp. 251–261Google Scholar
  89. Rabbel, W. and Schuh, H. (1986) The influence of atmospheric loading on VLBI experiments. J. Geophys., 59, 164–170Google Scholar
  90. Rabbel, W. and Zschau, J. (1985) Static deformations and gravity changes at the Earth’s surface due to atmospheric loading. J. Geophys., 56, 81–99Google Scholar
  91. Ramillien, G., Frappart, F., Cazenave, A. and Güntner, A. (2005) Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet. Sci. Lett., 235, 283–301Google Scholar
  92. Ray, J.R. (1996) Measurements of length of day using the Global Positioning System. J. Geophys. Res., 101, 20141–20149CrossRefGoogle Scholar
  93. Richter, B. (1995) Die Parametrisierung der Erdorientierung, Zeitschrift f. Vermessungswesen, 102(3), 109–119 (in German)Google Scholar
  94. Rochester, M.G. and Smylie, D.E. (1974) On changes in the trace of the Earth’s inertia tensor. J. Geophys. Res., 79, 4948–4951CrossRefGoogle Scholar
  95. Rosen, R.D., Salstein, D.A., Eubanks, T.M., Dickey, J.O. and Steppe, J.A. (1984) An El Nino signal in atmospheric angular momentum and Earth rotation. Science, 225, 411–414CrossRefGoogle Scholar
  96. Rothacher, M. (2002) Future IERS products: Implementation of the IAU 2000 Resolutions. In: Capitatine, N., Gambis, D., McCarthy, D.D., Petit, G., Ray, J., Richter, B., Rothacher, M., Standish, E.M. and Vondrak, J. (eds) Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions, IERS Technical Note 29, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, pp. 77–84Google Scholar
  97. Sasao, T., Okubo, S. and Saito, M. (1980) A simple theory on the dynamical effects of a stratified fluid core upon nutational motion of the Earth. In: Fedorov, E.P., Smith, M.L. and Bender, P.L. (eds) Nutation and the Earth’s Rotation. IAU Symposia 78, D. Reidel, Kiev, pp. 165–183CrossRefGoogle Scholar
  98. Scherneck, H.G. (1990) Loading Green’s functions for a continental shield with a Q-structure for the mantle and density constraints from the geoid. Bull. d’Inform. Marées Terr., 108, 7775–7792Google Scholar
  99. Schneider, M. (1988) Satellitengeodäsie, BI Wissenschaftsverlag, Zürich (in German)Google Scholar
  100. Schödlbauer, A. (2000) Geodätische Astronomie: Grundlagen und Konzepte, de Gruyter, Berlin (in German)CrossRefGoogle Scholar
  101. Schreiber, U., Velikoseltsev, A., Rothacher, M., Klügel, T., Stedman, G. and Wiltshire, D. (2004) Direct measurement of diurnal polar motion by ring laser gyroscopes. J. Geophys. Res., 109, 10.1029/2003JB002803Google Scholar
  102. Schuh, H., Dill, R., Greiner-Mai, H., Kutterer, H., Müller, J., Nothnagel, A., Richter, B., Rothacher, M., Schreiber, U. and Soffe, M. (eds) (2003) Erdrotation und globale dynamische Prozesse, Mitteilungen des Bundesamts für Kartographie und Geodäsie, Band 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main (in German)Google Scholar
  103. Schuh, H., Estermann, G., Crétaux, J.-F., Bergé-Nguyen, M. and van Dam, T. (2004) Investigation of hydrological and atmospheric loading by space geodetic techniques. In: Hwang, C., Shum, C.K. and Li, J.C. (eds) Satellite Altimetry for Geodesy, Geophysics and Oceanography. IAG Symposia 126, Springer, Berlin, pp. 123–132CrossRefGoogle Scholar
  104. Schuh, H., Nagel, S. and Seitz, T. (2001) Linear drift and periodic variations observed in long time series of polar motion. J. Geodesy, 74, 701–710CrossRefGoogle Scholar
  105. Seidelmann, P.K. (ed) (1992) Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill ValleyGoogle Scholar
  106. Seitz, F. (2004) Atmosphärische und ozeanische Einflüsse auf die Rotation der Erde – Numerische Untersuchungen mit einem dynamischen Erdsystemmodell, C 578, Deutsche Geodätische Kommission, München (in German)Google Scholar
  107. Seitz, M. (2009) Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems, C 630, Deutsche Geodätische Kommission, München (in German)Google Scholar
  108. Seitz, F. and Kutterer, H. (2005) Sensitivity analysis of the non-linear Liouville equation. In Sansò, F. (ed) A Window on the Future of Geodesy. IAG Symposia 128, Springer, Berlin, pp. 601–606CrossRefGoogle Scholar
  109. Seitz, F. and Schmidt, M. (2005) Atmospheric and oceanic contributions to Chandler wobble excitation determined by wavelet filtering. J. Geophys. Res., 110, 10.1029/2005JB003826Google Scholar
  110. Seitz, F., Stuck, J. and Thomas, M. (2004) Consistent atmospheric and oceanic excitation of the Earth’s free polar motion. Geophys. J. Int., 157, 25–35CrossRefGoogle Scholar
  111. Sidorenkov, N.S. (1992) Excitation mechanisms of Chandler polar motion. Astr. Zh., 69(4), 905–909Google Scholar
  112. Smith, M.L. and Dahlen, F.A. (1981) The period and Q of the Chandler wobble. Geophys. J. R. Astr. Soc., 64, 223–281CrossRefGoogle Scholar
  113. Souchay, J., Loysel, B., Kinoshita, H. and Folgueira, M. (1999) Corrections and new developments in rigid Earth nutation theory. Final tables ‘REN-200’ including crossed-nutation and spin-orbit coupling effects. Astron. Astrophys. Suppl. Ser., 135, 111–131CrossRefGoogle Scholar
  114. Souriau, A. and Cazenave, A. (1985) Reevaluation of the seismic excitation of the Chandler wobble from recent data. Earth Plan. Sci. Lett., 75, 410–416CrossRefGoogle Scholar
  115. Standish, E.M. (1998) JPL planetary and lunar ephemerides DE405/LE405, Techn. Ber. IOM 312.F-98-048, JPL, PasadenaGoogle Scholar
  116. Stuck, J. (2002) Die simulierte axiale atmosphärische Drehimpulsbilanz des ECHAM3-T21 GCM, Bonner Meteorologische Abhandlungen 56, Asgard-Verlag, Sankt Augustin (in German)Google Scholar
  117. Sun, H.P., Ducarme, B. and Dehant, V. (1995) Effect of the atmospheric pressure on surface displacements. J. Geodesy, 70, 131–139CrossRefGoogle Scholar
  118. Tisserand, F. (1891) Traité de Méchanique Céleste, Vol. II. Gauthier-Villars, Paris (in French)Google Scholar
  119. Torge, W. (2001) Geodesy. de Gruyter, BerlinCrossRefGoogle Scholar
  120. Trenberth, K.E. (1980) Atmospheric quasibiennial oscillations. Mon. Weather Rev., 108, 1370–1377CrossRefGoogle Scholar
  121. van Dam, T.M. and Herring, T.A. (1994) Detection of atmospheric pressure loading using very long baseline interferometry measurements. J. Geophys. Res., 99, 4505–4517CrossRefGoogle Scholar
  122. van Dam, T.M., Wahr, J., Chao, Y. and Leuliette, E. (1997) Predictions of crustal deformation and of geoid and sea level variability caused by oceanic and atmospheric loading. Geophys. J. Int., 99, 507–515CrossRefGoogle Scholar
  123. van Dam, T.M., Wahr, J., Milly, P.C.D., Shmakin, A.B., Blewitt, G., Lavalee, D. and Larson, K.M. (2001) Crustal displacements due to continental water loading. Geophys. Res. Lett., 28, 651–654CrossRefGoogle Scholar
  124. Vondrak, J., Ron, C., Pesek, I. and Cepek, A. (1995) New global solution of Earth orientation parameters from optical astrometry in 1900–1990. Astron. Astrophys., 297, 899–906Google Scholar
  125. Vondrak, J., Weber, R. and Ron, C. (2005) Free core nutation: direct observations and resonance effects. Astron. Astrophys., 444, 297–303CrossRefGoogle Scholar
  126. Wahr, J.M. (1981) The forced nutations of an elliptical, rotating, elastic and oceanless Earth. Geophys. J. R. Astr. Soc., 64, 705–727CrossRefGoogle Scholar
  127. Wahr, J.M. (1982) The effects of the atmosphere and oceans on the Earth’s wobble – I. Theory. Geophys. J. R. Astr. Soc., 70, 349–372CrossRefGoogle Scholar
  128. Wahr, J.M. (1983) The effects of the atmosphere and the oceans on the Earth’s wobble and on the seasonal variations in the length of day – II. Results. Geophys. J. R. Astr. Soc., 74, 451–487Google Scholar
  129. Wahr, J.M. (1985) Deformation induced by polar motion. J. Geophys. Res., 90, 9363–9368CrossRefGoogle Scholar
  130. Wilson, C.R. and Haubrich, R.A. (1976) Meteorological excitation of the Earth’s wobble. Geophys. J. R. Astr. Soc., 46, 707–743CrossRefGoogle Scholar
  131. Wilson, C.R. and Vicente, R.O. (1990) Maximum likelihood estimates of polar motion parameters. In: McCarthy, D.D. and Carter, W.E. (eds) Variations in Earth Rotation. Geophysical Monograph Series 59, American Geophysical Union, Washington, pp. 151–155CrossRefGoogle Scholar
  132. Winkelnkemper, T., Seitz, F., Min, S. and Hense, A. (2008) Simulation of historic and future atmospheric angular momentum effects on length-of-day variations with GCMs. In: Sideris, M. (ed) Observing our Changing Earth. IAG Symposia 133, Springer, Berlin, pp. 447–454CrossRefGoogle Scholar
  133. Wu, X., Heflin, M., Ivins, E., Argus, D. and Webb, F. (2003) Large-scale global surface mass variations inferred from GPS measurements of load-induced deformation. Geophys. Res. Lett., 30(14), 10.1029/2003GL017546Google Scholar
  134. Wu, X., Watkins, M., Ivins, E., Kwok, R., Wang, P. and Wahr, J. (2002) Toward global inverse solutions for current and past ice ass variations: contribution of secular satellite gravity and topography change measurements. J. Geophys. Res., 107, 10.1029/2001JB000543Google Scholar
  135. Yoder, C.F., Williams, J.G. and Parke, M.E. (1981) Tidal variations of Earth rotation. J. Geophys. Res., 86, 881–891CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Earth Oriented Space Science and TechnologyTechnische Universität München (TUM)MunichGermany
  2. 2.Institute of Geodesy and Geophysics, Vienna University of TechnologyWienAustria

Personalised recommendations