Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.


Quantum key distribution quantum cryptography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schneier, B.: Crypto-Gram: Quantum cryptography (December 2003),
  2. 2.
    Paterson, K.G., Piper, F., Schack, R.: Why quantum cryptography? Published as [3] (June 2004),
  3. 3.
    Paterson, K.G., Piper, F., Schack, R.: Quantum cryptography: A practical information security perspective. In: Zukowski, M., Kilin, S., Kowalik, J. (eds.) Proc. NATO Advanced Research Workshop on Quantum Communication and Security. NATO Science for Peace and Security Series, Sub-Series D: Information and Communication Security, vol. 11. IOS Press, Amsterdam (2007); See [2]Google Scholar
  4. 4.
    Schneier, B.: Schneier on Security: Switzerland protects its vote with quantum cryptography (October 2007),
  5. 5.
    Schneier, B.: Quantum cryptography: As awesome as it is pointless. Wired (October 2008)Google Scholar
  6. 6.
    Alléaume, R., Bouda, J., Branciard, C., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Länger, T., Leverrier, A., Lütkenhaus, N., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: SECOQC white paper on quantum key distribution and cryptography (January 2007),
  7. 7.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  8. 8.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. To appear in Reviews of Modern Physics (2008)Google Scholar
  9. 9.
    Good, J., Michie, D., Timms, G.: General report on tunny. Technical report, Government Code and Cypher School (1945); Declassified September 28, 2000, by Pulic Records Office, UK, documents HW 25/4 and HW 25/5Google Scholar
  10. 10.
    Bush, G.W.: Executive Order 13292. Further amendment to Executive Order 12958, as amended, Classified National Security Information (March 2003)Google Scholar
  11. 11.
    Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Physical Review Letters 78(17), 3414–3417 (1997)CrossRefGoogle Scholar
  12. 12.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)CrossRefGoogle Scholar
  13. 13.
    Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Information and Computation 4(5), 325–360 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Physical Review Letters 95(1), 010503 (2005)CrossRefGoogle Scholar
  15. 15.
    Brassard, G.: Brief history of quantum cryptography: A personal perspective. In: IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security 2005, pp. 19–23. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar
  16. 16.
    Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum key distribution systems. Physical Review A 78(4), 042333 (2008)CrossRefGoogle Scholar
  17. 17.
    Hwang, W.Y.: Quantum key distribution with high loss: Toward global secure communication. Physical Review Letters 91(5), 057901 (2003)CrossRefGoogle Scholar
  18. 18.
    Mayers, D., Yao, A.C.: Quantum cryptography with imperfect apparatus. In: Proc. 38th Annual IEEE Symposium on Foundations of Computer Science (FOCS) 1997, pp. 503–509. IEEE Press, Los Alamitos (1997)Google Scholar
  19. 19.
    Pironio, S., Acin, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New Journal of Physics 11(4), 045021 (2009)CrossRefGoogle Scholar
  20. 20.
    Cai, R.Y.Q., Scarani, V.: Finite-key analysis for practical implementations of quantum key distribution. New Journal of Physics 11, 045024 (2009)CrossRefGoogle Scholar
  21. 21.
    Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22(3), 265–279 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Peev, M., Nölle, M., Maurhardt, O., Lorünser, T., Suda, M., Poppe, A., Ursin, R., Fedrizzi, A., Zeilinger, A.: A novel protocol-authentication algorithm ruling out a man-in-the-middle attack in quantum cryptography. International Journal of Quantum Information 3(1), 225–231 (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Gardner, M.: Mathematical games: A new kind of cipher that would take millions of years to break. Scientific American, 120–124 (August 1977)Google Scholar
  24. 24.
    Atkins, D., Graff, M., Lenstra, A.K., Leyland, P.C.: The magic words are squeamish ossifrage (extended abstract). In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 265–277. Springer, Heidelberg (1995)Google Scholar
  25. 25.
    Lysyanskaya, A.: Cryptography: How to keep your secrets safe. Scientific American, pp. 89–94 (September 2008)Google Scholar
  26. 26.
    NIST: Recommendations for key management – Part 1: General (revised) (March 2007),
  27. 27.
    Babbage, S., Catalano, D., Cid, C., Dunkelman, O., Gehrmann, C., Granboulan, L., Lange, T., Lenstra, A., Nguyen, P., Paar, C., Pelzl, J., Pornin, T., Preneel, B., Rechberger, C., Rijmen, V., Robshaw, M., Rupp, A., Smart, N., Ward, M.: ECRYPT yearly report on algorithms and keysizes (2007-2008) (July 2008)Google Scholar
  28. 28.
    Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post Quantum Cryptography. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  29. 29.
    Hiskett, P.A., Rosenberg, D., Peterson, C.G., Hughes, R.J., Nam, S., Lita, A.E., Miller, A.J., Nordholt, J.E.: Long-distance quantum key distribution in optical fibre. New Journal of Physics 8(9), 193 (2006)CrossRefGoogle Scholar
  30. 30.
    Schmitt-Manderbach, T., Weier, H., Furst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G., Zeilinger, A., Weinfurter, H.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Physical Review Letters 98(1), 010504 (2007)CrossRefGoogle Scholar
  31. 31.
    Perdigues Armengol, J.M., Furch, B., de Matos, C.J., Minster, O., Cacciapuoti, L., Pfennigbauer, M., Aspelmeyer, M., Jennewein, T., Ursin, R., Schmitt-Manderbach, T., Baister, G., Rarity, J., Leeb, W., Barbieri, C., Weinfurter, H., Zeilinger, A.: Quantum communications at ESA: Towards a space experiment on the ISS. Acta Astronautica 63(1-4), 165–178 (2008)CrossRefGoogle Scholar
  32. 32.
    Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: The role of imperfect local operations in quantum communication. Physical Review Letters 81(26), 5932–5935 (1998)CrossRefGoogle Scholar
  33. 33.
    National Institute of Standards and Technology: Quantum information networks (2006),
  34. 34.
    Dixon, A.R., Yuan, Z.L., Dynes, J.F., Sharpe, A.W., Shields, A.J.: Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. Optics Express 16(23), 18790–18979 (2008)CrossRefGoogle Scholar
  35. 35.
    Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum network (2005),
  36. 36.
    Beals, T.R., Sanders, B.C.: Distributed relay protocol for probabilistic information-theoretic security in a randomly-compromised network. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 29–39. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  37. 37.
    Salvail, L., Peev, M., Diamanti, E., Alleaume, R., Lütkenhaus, N., Laenger, T.: Security of trusted repeater quantum key distribution networks. To appear in Journal of Computer Security (April 2009),

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Douglas Stebila
    • 1
  • Michele Mosca
    • 2
    • 3
  • Norbert Lütkenhaus
    • 2
  1. 1.Information Security InstituteQueensland University of TechnologyBrisbaneAustralia
  2. 2.Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations