Advertisement

Examples of Quantum Dynamics in Optomechanical Systems

  • Max Ludwig
  • Georg Heinrich
  • Florian Marquardt
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 36)

Abstract

Optomechanical systems exploit the interaction between the optical radiation field and mechanical resonators in a laser-driven cavity. In the past few years, these systems have been the focus of considerable experimental and theoretical attention, yielding promising successes, particularly in using optomechanical cooling to reduce the thermal occupation of the resonators. This offers the prospect of observing quantum dynamics involving the motion of macroscopic mechanical objects. We review two features: First, the nonlinear self-induced mechanical oscillations induced by a strong laser drive can exhibit interesting quantum behaviour at low temperatures. Second, a mechanically driven membrane inside an optical cavity can ’shuttle photons’ around, and this system exhibits intricate dynamical interference effects (Landau-Zener-Stueckelberg oscillations).

Keywords

Optomechanics quantum electrodynamics quantum physics photons nanomechanics optical cavity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gröblacher, S., Hertzberg, J.B., Vanner, M.R., Cole, G.D., Gigan, S., Schwab, K.C., Aspelmeyer, M.: Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat. Phys. 5(7), 485–488 (2009)CrossRefGoogle Scholar
  2. 2.
    Schliesser, A., Arcizet, O., Riviere, R., Anetsberger, G., Kippenberg, T.J.: Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 5(7), 509 (2009)CrossRefGoogle Scholar
  3. 3.
    Marquardt, F., Girvin, S.M.: Optomechanics. Physics 2, 40 (2009)CrossRefGoogle Scholar
  4. 4.
    Marquardt, F., Harris, J.G.E., Girvin, S.M.: Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006)CrossRefGoogle Scholar
  5. 5.
    Ludwig, M., Kubala, B., Marquardt, F.: The optomechanical instability in the quantum regime. New Journal of Physics 10, 095013 (2008)CrossRefGoogle Scholar
  6. 6.
    Höhberger, C., Karrai, K.: Self-oscillation of micromechanical resonators. In: Nanotechnology 2004, Proceedings of the 4th IEEE conference on nanotechnology, p. 419 (2004)Google Scholar
  7. 7.
    Kippenberg, T.J., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K.J.: Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005)CrossRefGoogle Scholar
  8. 8.
    Metzger, C., Ludwig, M., Neuenhahn, C., Ortlieb, A., Favero, I., Karrai, K., Marquardt, F.: Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008)CrossRefGoogle Scholar
  9. 9.
    Murch, K.W., Moore, K.L., Gupta, S., Stamper-Kurn, D.M.: Observation of quantum-measurement backaction with an ultracold atomic gas. Nat. Phys. 4(7), 561–564 (2008)CrossRefGoogle Scholar
  10. 10.
    Heinrich, G., Harris, J.G.E., Marquardt, F.: The photon shuttle: Landau-Zener-Stueckelberg dynamics in an optomechanical system (2009), arXiv:0909.2164Google Scholar
  11. 11.
    Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452(7183), 72–75 (2008)CrossRefGoogle Scholar
  12. 12.
    Sankey, J.C., Jayich, A.M., Zwickl, B.M., Yang, C., Harris, J.G.E.: Improved “position squared” readout using degenerate cavity modes. In: Cote, R., Gould, P.L., Rozman, M. (eds.) Proceedings of the XXI International Conference on Atomic Physics. World Scientific, Singapore (2008)Google Scholar
  13. 13.
    Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. London A 137(Non-Adiabatic Crossing of Energy Levels), 696 (1932)CrossRefzbMATHGoogle Scholar
  14. 14.
    Landau, L.D.: On the theory of transfer of energy at collisions ii. Phys. Z. USSR 2, 46–51 (1932)Google Scholar
  15. 15.
    Stückelberg, E.C.G.: Theorie der unelastischen Stösse zwischen Atomen. Helv. Phys. Acta 5, 369–422 (1932)zbMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Max Ludwig
    • 1
  • Georg Heinrich
    • 1
  • Florian Marquardt
    • 1
  1. 1.Arnold-Sommerfeld Center for Theoretical Physics, Center for NanoScience and Department of PhysicsLudwig-Maximilians Universität MünchenMunichGermany

Personalised recommendations