Power-Aware Intrusion Detection in Mobile Ad Hoc Networks

  • Sevil Şen
  • John A. Clark
  • Juan E. Tapiador
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 28)


Mobile ad hoc networks (MANETs) are a highly promising new form of networking. However they are more vulnerable to attacks than wired networks. In addition, conventional intrusion detection systems (IDS) are ineffective and inefficient for highly dynamic and resource-constrained environments. Achieving an effective operational MANET requires tradeoffs to be made between functional and non-functional criteria. In this paper we show how Genetic Programming (GP) together with a Multi-Objective Evolutionary Algorithm (MOEA) can be used to synthesise intrusion detection programs that make optimal tradeoffs between security criteria and the power they consume.


Mobile ad hoc networks intrusion detection power-aware evolutionary computation genetic programming multi-objective optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonnmotion: A mobility scenario generation and analysis tool,
  2. 2.
    Ecj18: A java-based evolutionary computation research system,
  3. 3.
    Ns-2: The network simulator,
  4. 4.
  5. 5.
    Abraham, A., Grosan, C.: Evolving intrusion detection systems. In: Genetic Systems Programming: Theory and Experiences, vol. 13, pp. 57–79. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Abraham, A., Grosan, C., Martiv-Vide, C.: Evolutionary design of intrusion detection programs. Int. Journal of Network Security 4, 328–339 (2007)Google Scholar
  7. 7.
    Huang, Y., Fan, W., Lee, W., Yu, P.S.: Cross-feature analysis for detection ad-hoc routing anomalies. In: Proceedings of the 23rd International Conference on Distributed Computing Systems, ICDCS (2003)Google Scholar
  8. 8.
    Anantvalee, T., Wu, J.: A Survey on Intrusion Detection in Mobile Ad Hoc Networks, ch. 7, pp. 159–180. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Anjum, F., Talpade, R.: Lipad: lightweight packet drop detection for ad hoc networks. In: 60th IEEE Vehicular Technology Conference Proceedings, pp. 1233–1237. IEEE, Los Alamitos (2004)Google Scholar
  10. 10.
    Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power analysis and optimizations. In: Proceedings of the 27th International Symposiyum on Computer Architecture, ISCA-27 (2000)Google Scholar
  11. 11.
    Denning, D.: An intrusion detection model. IEEE Transactions on Software Engineering 13(2), 222–232 (1987)CrossRefGoogle Scholar
  12. 12.
    Huang, Y., Lee, W.: A cooperative intrusion detection system for ad hoc networks. In: Proc. of the 1st ACM Workshop on Security of Ad Hoc and Sensor Networks (2003)Google Scholar
  13. 13.
    Kachirski, O., Guha, R.: Effective intrusion detection usign multiple sensors in wireless ad hoc networks. In: Proceedings of the 36th IEEE International Conference on System Sciences (2003)Google Scholar
  14. 14.
    Liu, Y., Chen, K., Liao, X., Zhang, W.: A genetic clustering method for intrusion detection. Pattern Recognition 37 (2004)Google Scholar
  15. 15.
    Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile ad hoc networks. In: Proc. of ACM Int. Conf. on Mobile Computing and Networking (MOBICOM), pp. 255–265 (2000)Google Scholar
  16. 16.
    Me, L.: Gassata, a genetic algorithm as an alternative tool for security audit trails analysis. In: Proceedings of the International Symposium on Recent Advances in Intrusion Detection, RAID 1998 (1998)Google Scholar
  17. 17.
    Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3, 199–230 (1995)CrossRefGoogle Scholar
  18. 18.
    Parker, J., Undercoffer, J., Pinkston, J., Joshi, A.: On intrusion detection and response for mobile ad hoc networks. In: 23rd IEEE Int. Performance Computing and Communications Conference Proceedings (2004)Google Scholar
  19. 19.
    Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. In: 2nd IEEE Workshop on Mobile Computer Systems and Applications Proceedings, pp. 90–100 (1999)Google Scholar
  20. 20.
    Ryan, C., Colline, J., O’Neill, M.: Grammatical evolution: Evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–95. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Sen, S., Clark, J.A.: A grammatical evolution approach to intrusion detection on mobile ad hoc networks. In: Proc. of Second ACM Conference on Wireless Network Security, WiSec 2009 (2009)Google Scholar
  22. 22.
    Sen, S., Clark, J.A.: Intrusion Detection in Mobile Ad Hoc Networks, ch. 17, pp. 427–454. Springer, Heidelberg (2009)Google Scholar
  23. 23.
    Smith, A.: An examination of an intrusion detection architecture for wireless ad hoc networks. In: Proceedings of the 5th National Colloquium for Information System Security Education (2001)Google Scholar
  24. 24.
    Sterne, D., Balasubramanyam, P., Carman, D., Wilson, B., Talpade, R., Ko, C., Balupari, R., Tseng, C.-Y., Bowen, T.: A general cooperative intrusion detection architecture for manets. In: Proceedings of the 3rd International Workshop on Information Assurance, pp. 57–70 (2005)Google Scholar
  25. 25.
    Sun, B., Wu, K., Pooch, U.: Zone-based intrusion detection for mobile ad hoc networks. Int. Journal of Ad Hoc and Sensor Wireless Networks 2(3) (2003)Google Scholar
  26. 26.
    Tseng, C., Wang, S.-H., Lee, W., Ko, C., Lewitt, K.: DEMEM: Distributed evidence-driven message exchange intrusion detection model for MANET. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 249–271. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Tseng, C.-Y., Balasubramayan, P., Ko, C., Limprasittiporn, R., Rowe, J., Lewitt, K.: A specification-based intrusion detection system for aodv. In: Proceedings of the ACM Workshop on Security in Ad Hoc and Sensor Networks, SASN (2003)Google Scholar
  28. 28.
    Uppuluri, P., Sekar, R.: Experiences with specification-based intrusion detection. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 172–189. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Vigna, G., Gwalani, S., Srinivasan, K., Belding-Royer, E.M., Kemmerer, R.A.: An intrusion detection tool for aodv-based ad hoc wireless networks. In: Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC 2004), pp. 16–27. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  30. 30.
    Weise, T.: Genetic programming for sensor networks. Technical report (2006)Google Scholar
  31. 31.
    White, D.R., Clark, J., Jacob, J., Poulding, S.: Evolving software in the presence of resource constraints. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008). Springer, Heidelberg (2008)Google Scholar
  32. 32.
    Wilson, D., Kaur, D.: Knowledge extraction from kdd’99 intrusion data using grammatical evolution. WSEAS Transactions on Information Science and Applications 4, 237–244 (2007)Google Scholar
  33. 33.
    Yi, P., Zhong, Y., Zhang, S.: A novel intrusion detection method for mobile ad hoc networks. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 1183–1192. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Zhang, Y., Lee, W., Huang, Y.: Intrusion detection techniques for mobile wireless networks. Wireless Networks Journal (ACM WINET) 2(5) (September 2003)Google Scholar
  35. 35.
    Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evolutionary algorithm. Technical Report 103, Swiss Federal Institute of TechnologyGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Sevil Şen
    • 1
  • John A. Clark
    • 1
  • Juan E. Tapiador
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkUK

Personalised recommendations