Advertisement

Biotin-Streptavidin Sensitive BioFETs and Their Properties

  • Thomas Windbacher
  • Viktor Sverdlov
  • Siegfried Selberherr
Part of the Communications in Computer and Information Science book series (CCIS, volume 52)

Abstract

In this work the properties of a biotin-streptavidin BioFET have been studied numerically with homogenized boundary interface conditions as the link between the oxide of the FET and the analyte which contains the bio-sample. The biotin-streptavidin reaction pair is used in purification and detection of various biomolecules; the strong streptavidin-biotin bond can also be used to attach biomolecules to one another or onto a solid support. Thus this reaction pair in combination with a FET as the transducer is a powerful setup enabling the detection of a wide variety of molecules with many advantages that stem from the FET, like no labeling, no need of expensive read-out devices, the possibility to put the signal amplification and analysis on the same chip, and outdoor usage without the necessity of a lab.

Keywords

Dipole Moment Output Curve Drain Current Reaction Pair Molecule Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pirrung, M.C.: How to make a DNA chip. Angew. Chem. Int. Ed. 41, 1276–1289 (2002)CrossRefGoogle Scholar
  2. 2.
    Shinwari, M.W., Deen, M.J., Landheer, D.: Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectronics Reliability 47(12), 2025–2057 (2007)CrossRefGoogle Scholar
  3. 3.
    Fritz, J., Cooper, E.B., Gaudet, S., Soger, P.K., Manalis, S.R.: Electronic detection of DNA by its intrinsic molecular charge. PNAS 99, 1412–1416 (2002)Google Scholar
  4. 4.
    Hahm, J., Lieber, C.M.: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters 4(1), 51–54 (2004)CrossRefGoogle Scholar
  5. 5.
    Gao, Z., Agarwal, A., Trigg, A., Singh, N., Fang, C., Tung, C., Fan, Y., Buddharaju, K., Kong, J.: Silicon nanowire arrays for label-free detection of DNA. Analytical Chemistry 79(9), 3291–3297 (2007)CrossRefGoogle Scholar
  6. 6.
    Stern, E., Vacic, A., Reed, M.A.: Semiconducting nanowire field-effect transistor biomolecular sensors. IEEE Transactions on Electron Devices 55(11), 3119–3130 (2008)CrossRefGoogle Scholar
  7. 7.
    Kim, S.N., Rusling, J.F., Papadimitrakopoulos, F.: Carbon nanotubes for electronic and electrochemical detection of biomolecules. Advanced Materials 19(20), 3214–3228 (2007)CrossRefGoogle Scholar
  8. 8.
    Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 23(10), 1294–1301 (2005)CrossRefGoogle Scholar
  9. 9.
    Im, H., Huang, X., Gu, B., Choi, Y.: A dielectric-modulated field-effect transistor for biosensing. Nature Nanotechnology 2(7), 430–434 (2007)CrossRefGoogle Scholar
  10. 10.
    Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)CrossRefGoogle Scholar
  11. 11.
    Gupta, S., Elias, M., Wen, X., Shapiro, J., Brillson, L.: Detection of clinical relevant levels of protein analyte under physiologic buffer using planar field effect transistors. Biosensors and Bioelectronics 24, 505–511 (2008)CrossRefGoogle Scholar
  12. 12.
    Stern, E., Klemic, J., Routenberg, D., Wyrembak, P., Turner-Evans, D., Hamilton, A., LaVan, D., Fahmy, T., Reed, M.: Lable-free immunodetection with CMOS-compatible semiconducting nanowires. Nature Letters 445(1), 519–522 (2007)CrossRefGoogle Scholar
  13. 13.
    Park, K.M., Lee, S.K., Sohn, Y.S., Choi, S.Y.: BioFET sensor for detection of albumin in urine. Electronic Letters 44(3) (January 2008)Google Scholar
  14. 14.
    Girard, A., Bendria, F., Sagazan, O.D., Harnois, M., Bihan, F.L., Salaün, A., Mohammed-Brahim, T., Brissot, P., Loréal, O.: Transferrin electronic detector for iron disease diagnostics. IEEE Sensors, 474–477 (October 2006)Google Scholar
  15. 15.
    Tang, T.W., Ieong, M.K.: Discretization of flux densities in device simulations using optimum artificial diffusivity. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 14(11), 1309–1315 (1995)CrossRefGoogle Scholar
  16. 16.
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Heidelberg (1984)Google Scholar
  17. 17.
    Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhäusser, A., Schöning, M.J.: Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors and Actuators, B: Chemical 111-112, 470–480 (2005)CrossRefGoogle Scholar
  18. 18.
    Heitzinger, C., Kennell, R., Klimeck, G., Mauser, N., McLennan, M., Ringhofer, C.: Modeling and simulation of field-effect biosensors (BioFETs) and their deployment on the nanoHUB. J. Phys.: Conf. Ser. 107, 1–12 (2008)CrossRefGoogle Scholar
  19. 19.
    Ringhofer, C., Heitzinger, C.: Multi-scale modeling and simulation of field-effect biosensors. ECS Transactions 14(1), 11–19 (2008)CrossRefGoogle Scholar
  20. 20.
    Windbacher, T., Sverdlov, V., Selberherr, S., Heitzinger, C., Mauser, N., Ringhofer, C.: Simulation of field-effect biosensors (BioFETs). In: Proc. Simulation of Semiconductor Processes and Devices (SISPAD 2008), Hakone, Japan, September 2008, pp. 1–4 (2008)Google Scholar
  21. 21.
    Windbacher, T., Sverdlov, V., Selberherr, S., Heitzinger, C., Mauser, N., Ringhofer, C.: Simulation of field-effect biosensors (BioFETs) for biotin-streptavidin complexes. In: 29th International Conference on the Physics of Smeiconductors (ICPS 2008), Rio de Janeiro, Brasil (2008)Google Scholar
  22. 22.
    Protein data bank: (A resource for studying biological macromolecules), http://www.pdb.org/
  23. 23.
    Heitzinger, C., Klimeck, G.: Computational aspects of the three-dimensional feature-scale simulation of silicon-nanowire field-effect sensors for DNA detection. Journal of Computational Electronics 6, 387–390 (2007)CrossRefGoogle Scholar
  24. 24.
    Landheer, D., Aers, G., McKinnon, W., Deen, M., Ranuárez, J.: Model for the field effect from layers of biological macromolecules on the gates of meta-oxide-semiconductor transistors. Journal of Applied Physics 98(4), 044701–1 –044701–15 (2005)Google Scholar
  25. 25.
    Stenkamp, R.E., Trong, I.L., Klumb, L., Stayton, P.S., Freitag, S.: Structural studies of the streptavidin binding loop. Protein Science 6(6), 1157–1166 (1997)CrossRefGoogle Scholar
  26. 26.
    Deen, M.J., Shinwari, M.W., Ranuárez, J.C., Landheer, D.: Noise considerations in field-effect biosensors. Journal of Applied Physics 100(7), 074703–1 –074703–8 (2006)Google Scholar
  27. 27.
    Bousse, L.: The Chemical Sensitivity of Electrolyte/Insulator/Silicon Structures. Phd, Dissertation, Twente University of Technology, Enschede (1982)Google Scholar
  28. 28.
    Bousse, L., Mostarshed, S., Van Der Shoot, B., De Rooij, N.F., Gimmel, P., Gopel, W.: Zeta potential measurements of Ta2O5 and SiO2 thin films. Journal of Colloid and Interface Science 147(1), 22–32 (1991)CrossRefGoogle Scholar
  29. 29.
    Deen, M.J.: Highly sensitive, low-cost integrated biosensors. In: SBCCI 2007: 20th Symposium on Integrated Circuits and System Design, p. 1 (2007)Google Scholar
  30. 30.
    Oh, S.W., Moon, J.D., Lim, H.J., Park, S.Y., Kim, T., Park, J., Han, M.H., Snyder, M., Choi, E.Y.: Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB Journal 19(10), 1335–1337 (2005)Google Scholar
  31. 31.
    Wacker, R., Schröder, H., Niemeyer, C.M.: Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: A comparative study. Analytical Biochemistry 330(2), 281–287 (2004)CrossRefGoogle Scholar
  32. 32.
    Kusnezow, W., Jacob, A., Walijew, A., Diehl, F., Hoheisel, J.D.: Antibody microarrays: An evaluation of production parameters. Proteomics 3(3), 254–264 (2003)CrossRefGoogle Scholar
  33. 33.
    Peluso, P., Wilson, D.S., Do, D., Tran, H., Venkatasubbaiah, M., Quincy, D., Heidecker, B., Poindexter, K., Tolani, N., Phelan, M., Witte, K., Jung, L.S., Wagner, P., Nock, S.: Optimizing antibody immobilization strategies for the construction of protein microarrays. Analytical Biochemistry 312(2), 113–124 (2003)CrossRefGoogle Scholar
  34. 34.
    Turková, J.: Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. Journal of Chromatography B: Biomedical Sciences and Applications 722(1-2), 11–31 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Windbacher
    • 1
  • Viktor Sverdlov
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTU WienWienAustria

Personalised recommendations