Advertisement

Representations of Music in Ranking Rhythmic Hypotheses

  • Jaroslaw Wojcik
  • Bozena Kostek
Part of the Studies in Computational Intelligence book series (SCI, volume 274)

Abstract

The chapter presents first the main issues related to music information retrieval (MIR) domain. Within this domain, there exists a variety of approaches to musical instrument recognition, musical phrase classification, melody classification (e.g. query-by-humming systems), rhythm retrieval, retrieval of high-level-musical features such as looking for emotions in music or differences in expressiveness, music search based on listeners’ preferences, etc. The objective of this study is to propose a method for retrieval of hypermetric rhythm on the basis of melody. A stream of sounds in MIDI format is introduced at the system input. On the basis of a musical content the method retrieves a hypermetric structure of rhythm of a musical piece consisting of rhythmic motives, phrases, and sentences. On the basis of the hypermetric structure retrieved, a system capable of creating automatic drum accompaniment to a given melody supporting the composition is proposed. A method does not use any information about rhythm (time signature), which is often included in MIDI information. Neither rhythmic tracks nor harmonic information are used in this method. The only information analyzed is a melody, which may be monophonic as well as polyphonic. The analysis starts after the entire piece has been played. Recurrence of melodic and rhythmic patterns and the rhythmic salience of sounds are combined to create an algorithm that finds the metric structure of rhythm in a given melody.

Keywords

Salience Function Rhythmic Pattern Musical Piece Music Information Retrieval Melodic Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, P.E., Dannenberg, R.B.: Tracking musical beats in real time. In: Int. Comp. Music Conf., Glasgow, Scotland, pp. 140–143 (1990)Google Scholar
  2. 2.
    Cemgil, A.T., Desain, P., Kappen, B.: Rhythm quantization for transcription. Comp. Music J. 24(2), 60–76 (2000)CrossRefGoogle Scholar
  3. 3.
    Desain, P.: A connectionist and a traditional AI quantizer, symbolic versus sub-symbolic models of rhythm perception. Contemporary Music Review 9, 239–254 (1993)CrossRefGoogle Scholar
  4. 4.
    Dovey, M.J.: Overview of the OMRAS project: online music retrieval and searching. J. American Society for Information Science and Technology 55(12), 1100–1107 (2004)CrossRefGoogle Scholar
  5. 5.
    Dixon, S., Cambouropoulos, E.: Beat tracking with musical knowledge. In: Proc. of the European Conf. on Artificial Intelligence, Amsterdam, pp. 626–630 (2000)Google Scholar
  6. 6.
    Dixon, S.: Automatic Extraction of Tempo and Beat from Expressive Performances. J. of New Music Research, Swets & Zeitlinger 30(1), 39–58 (2001)CrossRefGoogle Scholar
  7. 7.
    Ethier, G.: Techniques of Hypermetric Manipulation in Canadian Blues. Canadian Journal for Traditional Music (2001)Google Scholar
  8. 8.
    Goto, M.: An Audio-Based Real-Time Beat Tracking System for Music with or without Drum-Sounds. J. of New Music Research 30, 159–171 (2001)CrossRefGoogle Scholar
  9. 9.
    Gouyon, F., Dixon, S.: A review of automatic rhythm description systems. Computer Music Journal 29, 34–54 (2005)CrossRefGoogle Scholar
  10. 10.
    http://books.google.com/books?id (information on MPEG-7 standard - MelodyContour)
  11. 11.
  12. 12.
    http://www.ismir.net/ (website of ISMIR conferences)
  13. 13.
  14. 14.
    Kostek, B.: Soft Computing in Acoustics. In: Applications of Neural Networks, Fuzzy Logic and Rough Sets to Musical Acoustics. Studies in Fuzziness and Soft Computing. Physica Verlag, Heildelberg (1999)Google Scholar
  15. 15.
    Kostek, B.: Perception-Based Data Processing in Acoustics. In: Applications to Music Information Retrieval and Psychophysiology of Hearing. Cognitive Technologies. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Kostek, B., Czyzewski, A.: Representing Musical Instrument Sounds for their Automatic Classification. J. Audio Eng. Soc. 49, 768–785 (2001)Google Scholar
  17. 17.
    Kostek, B.: Applying computational intelligence to musical acoustics. Archives of Acoustics 32(3), 617–629 (2007)Google Scholar
  18. 18.
    Kostek, B., Wojcik, J., Holonowicz, P.: Estimation the Rhythmic Salience of Sound with Association Rules and Neural Network. In: Intelligent Information Systems, Gdansk, Poland (2005)Google Scholar
  19. 19.
    Kostek, B., Wojcik, J.: Machine Learning System for Estimation Rhythmic Salience of Sounds. Int. J. of Knowledge-Based and Intelligent Engineering Systems (2005)Google Scholar
  20. 20.
    Kostek, B., Wojcik, J.: Automatic Salience-Based Hypermetric Rhythm Retrieval. In: MUE (Multimedia and Ubiquitous Engineering) International Conference, April 26-28, pp. 1220–1226 (2007)Google Scholar
  21. 21.
    Kostek, B., Wojcik, J., Szczuko, P.: Automatic Rhythm Retrieval from Musical Files. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 56–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983)Google Scholar
  23. 23.
    Lewis, R.A., Cohen, A., Jiang, W., Ras, Z.: Hierarchical Tree for Dissemination of Polyphonic Noise. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 448–456. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    McAuley, J.D., Semple, P.: The effect of tempo and musical experience on perceived beat. Australian Journal of Psychology 51(3), 176–187 (1999)CrossRefGoogle Scholar
  25. 25.
    Parncutt, R.A.: A perceptual model of pulse salience and metrical accent in musical rhythms. Music Perception 11(4), 409–464 (1994)Google Scholar
  26. 26.
    Rosenthal, D.F.: Emulation of human rhythm perception. Comp. Music J. 16(1), 64–76 (Spring 1992)CrossRefGoogle Scholar
  27. 27.
    Rosenthal, D.F.: Machine Rhythm: Computer Emulation of Human Rhythm Perception, PhD thesis, MIT Media Lab, Cambridge, Mass (1992)Google Scholar
  28. 28.
    Ryynanen, M.P., Klapuri, A.: Polyphonic music transcription using note event modeling. In: Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 319–322 (2005)Google Scholar
  29. 29.
    Povel, D.J., Essens, P.: Perception of temporal patterns. Music Perception 2(4), 411–440 (1985)Google Scholar
  30. 30.
    Schuller, B., Eyben, F., Rigoll, G.: Tango or Waltz?: Putting Ballroom Dance Style into Tempo Detection. EURASIP Journal on Audio, Speech, and Music Processing, Article ID 846135 2008 (2008)Google Scholar
  31. 31.
    Takeda, H., Nishimoto, T., Sagayama, S.: Rhythm and Tempo Analysis Toward Automatic Music Transcription. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007 (2007)Google Scholar
  32. 32.
    Temperley, D., Sleator, D.: Modeling meter and harmony: A preference-rule approach. Comp. Music J. 15(1), 10–27 (1999)CrossRefGoogle Scholar
  33. 33.
    Tseng, Y.H.: Multilingual Keyword Extraction for Term Suggestion. In: Proc. of the 21st Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, New York, pp. 377–378 (1998)Google Scholar
  34. 34.
    Tseng, Y.H.: Content-based retrieval for music collections. In: Proc. of SIGIR 1999, 22nd Int. Conf. on Research and Development in Information Retrieval, New York, pp. 176–182 (1999)Google Scholar
  35. 35.
    Wieczorkowska, A.: Learning from Soft-Computing Methods on Abnormalities in Audio Data. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 465–474. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  36. 36.
    Wieczorkowska, A., Ras, Z.W., Zhang, X., Lewis, R.: Multi-way Hierarchic Classification of Musical Instrument Sounds. In: IEEE CS International Conference on Multimedia and Ubiquitous Engineering (MUE 2007), Seoul, Korea, April 26-28 (2007)Google Scholar
  37. 37.
    Wieczorkowska, A., Ras, Z.W.: Editorial: Music Information Retrieval. J. Intell. Inf. Syst. 21(1), 5–8 (2003)CrossRefGoogle Scholar
  38. 38.
    Wojcik, J., Kostek, B.: Intelligent Technologies for Inconsistent Processing. In: Nguyen, N.T. (ed.) Intelligent Methods for Musical Rhythm Finding Systems. Int. Series on Advanced Intelligence, vol. 10, pp. 187–202 (2004)Google Scholar
  39. 39.
    Wojcik, J.: Methods of Forming and Ranking Rhythmic Hypotheses in Musical Pieces, Ph.D. Thesis, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk (2006)Google Scholar
  40. 40.
    Wojcik, J., Kostek, B.: Computational complexity of the algorithm creating hypermetric rhythmic hypotheses. Archives of Acoustics 33(1), 57–63 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jaroslaw Wojcik
    • 1
  • Bozena Kostek
    • 1
  1. 1.Multimedia Systems Department, Electronics, Telecommunications and Informatics FacultyGdansk University of TechnologyPoland

Personalised recommendations