Towards a Notion of Unsatisfiable Cores for LTL

  • Viktor Schuppan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5961)


Unsatisfiable cores, i.e., parts of an unsatisfiable formula that are themselves unsatisfiable, have important uses in debugging specifications, speeding up search in model checking or SMT, and generating certificates of unsatisfiability. While unsatisfiable cores have been well investigated for Boolean SAT and constraint programming, the notion of unsatisfiable cores for temporal logics such as LTL has not received much attention. In this paper we investigate notions of unsatisfiable cores for LTL that arise from the syntax tree of an LTL formula, from converting it into a conjunctive normal form, and from proofs of its unsatisfiability. The resulting notions are more fine-granular than existing ones.


Model Check Temporal Logic Linear Temporal Logic Conjunctive Normal Form Parse Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A., Vardi, M.: Enhanced vacuity detection in linear temporal logic. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  4. 4.
    Bakker, R., Dikker, F., Tempelman, F.: Diagnosing and solving over-determined constraint satisfaction problems. In: IJCAI (1993)Google Scholar
  5. 5.
    Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in temporal model checking. Formal Methods in System Design 18(2) (2001)Google Scholar
  6. 6.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded LTL model checking. Logical Methods in Computer Science 2(5) (2006)Google Scholar
  8. 8.
    Bloem, R., Cavada, R., Pill, I., Roveri, M., Tchaltsev, A.: RAT: A tool for the formal analysis of requirements. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 263–267. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bruni, R., Sassano, A.: Restoring satisfiability or maintaining unsatisfiability by finding small unsatisfiable subformulae. In: SAT (2001)Google Scholar
  10. 10.
    Chinneck, J., Dravnieks, E.: Locating minimal infeasible constraint sets in linear programs. ORSA Journal on Computing 3(2) (1991)Google Scholar
  11. 11.
    Chockler, H., Gurfinkel, A., Strichman, O.: Beyond vacuity: Towards the strongest passing formula. In: FMCAD (2008)Google Scholar
  12. 12.
    Chockler, H., Kupferman, O., Vardi, M.: Coverage metrics for temporal logic model checking. Formal Methods in System Design 28(3) (2006)Google Scholar
  13. 13.
    Chockler, H., Strichman, O.: Easier and more informative vacuity checks. In: MEMOCODE (2007)Google Scholar
  14. 14.
    Cimatti, A., Griggio, A., Sebastiani, R.: A simple and flexible way of computing small unsatisfiable cores in SAT modulo theories. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 334–339. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for realizability. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 52–67. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Cimatti, A., Roveri, M., Schuppan, V., Tonetta, S.: Boolean abstraction for temporal logic satisfiability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 532–546. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Cimatti, A., Roveri, M., Sheridan, D.: Bounded verification of past LTL. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 245–259. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: From informal requirements to property-driven formal validation. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008. LNCS, vol. 5596, pp. 166–181. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Clarke, E., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. Formal Methods in System Design 10(1) (1997)Google Scholar
  20. 20.
    Clarke, E., Talupur, M., Veith, H., Wang, D.: SAT based predicate abstraction for hardware verification. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 78–92. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Fisher, M.: A resolution method for temporal logic. In: IJCAI (1991)Google Scholar
  23. 23.
    Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Trans. Comput. Log. 2(1) (2001)Google Scholar
  24. 24.
    Fisman, D., Kupferman, O., Sheinvald-Faragy, S., Vardi, M.: A framework for inherent vacuity. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 7–22. Springer, Heidelberg (2009)Google Scholar
  25. 25.
    Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: PSTV (1995)Google Scholar
  26. 26.
    Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: DATE (2003)Google Scholar
  27. 27.
    Grégoire, É., Mazure, B., Piette, C.: MUST: Provide a finer-grained explanation of unsatisfiability. In: Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 317–331. Springer, Heidelberg (2007)Google Scholar
  28. 28.
    Gurfinkel, A., Chechik, M.: How vacuous is vacuous? In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004)Google Scholar
  29. 29.
    Heljanko, K., Junttila, T., Latvala, T.: Incremental and complete bounded model checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 98–111. Springer, Heidelberg (2005)Google Scholar
  30. 30.
    Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  31. 31.
    Kupferman, O., Vardi, M.: Vacuity detection in temporal model checking. STTT 4(2) (2003)Google Scholar
  32. 32.
    Namjoshi, K.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 2. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Namjoshi, K.: An efficiently checkable, proof-based formulation of vacuity in model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 57–69. Springer, Heidelberg (2004)Google Scholar
  34. 34.
    Peled, D., Pnueli, A., Zuck, L.: From falsification to verification. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, p. 292. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  35. 35.
    Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal analysis of hardware requirements. In: DAC (2006)Google Scholar
  36. 36.
    Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3) (1986)Google Scholar
  37. 37.
    Pnueli, A.: The temporal logic of programs. In: FOCS (1977)Google Scholar
  38. 38.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. POPL (1989)Google Scholar
  39. 39.
    Samer, M., Veith, H.: On the notion of vacuous truth. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 2–14. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  40. 40.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: IJCAI. Morgan Kaufmann, San Francisco (2003)Google Scholar
  41. 41.
    Schuppan, V.: Towards a notion of unsatisfiable cores for LTL. Technical Report 200901000, Fondazione Bruno Kessler (2009)Google Scholar
  42. 42.
    Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 108–125. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  43. 43.
    Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging overconstrained declarative models using unsatisfiable cores. In: ASE (2003)Google Scholar
  44. 44.
    Simmonds, J., Davies, J., Gurfinkel, A., Chechik, M.: Exploiting resolution proofs to speed up LTL vacuity detection for BMC. In: FMCAD (2007)Google Scholar
  45. 45.
    Torlak, E., Chang, F., Jackson, D.: Finding minimal unsatisfiable cores of declarative specifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 326–341. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  46. 46.
    Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: Debugging OWL-DL ontologies: A heuristic approach. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 745–757. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  47. 47.
    Wolfman, S., Weld, D.: The LPSAT engine & its application to resource planning. In: IJCAI. Morgan Kaufmann, San Francisco (1999)Google Scholar
  48. 48.
    Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable Boolean formula. Presented at SAT (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Viktor Schuppan
    • 1
  1. 1.FBK-irstTrentoItaly

Personalised recommendations