Equational Reasoning on Ad Hoc Networks

  • Fatemeh Ghassemi
  • Wan Fokkink
  • Ali Movaghar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5961)


We provide an equational theory for Restricted Broadcast Process Theory to reason about ad hoc networks. We exploit an extended algebra called Computed Network Theory to axiomatize restricted broadcast. It allows one to define an ad hoc network with respect to the underlying topologies. We give a sound and complete axiomatization for the recursion-free part of the term algebra CNT, modulo what we call rooted branching computed network bisimilarity.


Operational Semantic Parallel Composition Operational Rule Label Transition System Visible Address 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeten, J.C.M., Bergstra, J.A., Reniers, M.A.: Discrete time process algebra with silent step. In: Proof, language, and interaction: essays in honour of Robin Milner, pp. 535–569. MIT Press, Cambridge (2000)Google Scholar
  2. 2.
    Basten, T.: Branching bisimilarity is an equivalence indeed! Inf. Process. Lett. 58(3), 141–147 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60(1-3), 109–137 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoretical Computer Science 37, 21–77 (1985)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fokkink, W.J.: Introduction to Process Algebra. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  6. 6.
    Ghassemi, F., Fokkink, W.J., Movaghar, A.: Restricted broadcast process theory. In: Cerone, A., Gruner, S. (eds.) Proc. 6th Conference on Software Engineering and Formal Methods (SEFM 2008), pp. 345–354. IEEE, Los Alamitos (2008)CrossRefGoogle Scholar
  7. 7.
    Ghassemi, F., Fokkink, W.J., Movaghar, A.: Equational reasoning on ad hoc networks. Technical report, Sharif University of Technology (2009),
  8. 8.
    Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Merro, M.: An observational theory for mobile ad hoc networks. In: Proc. 23rd Conference on the Mathematical Foundations of Programming Semantics (MFPS XXIII). Electronic Notes in Theoretical Computer Science, vol. 173, pp. 275–293. Elsevier, Amsterdam (2007)Google Scholar
  10. 10.
    Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. In: Proc. 22nd Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXII). Electronic Notes in Theoretical Computer Science, vol. 158, pp. 331–353. Elsevier, Amsterdam (2006)Google Scholar
  11. 11.
    Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks. Theoretical Computer Science 367(1), 203–227 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc networks. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 296–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. Journal of the ACM 43(3), 555–600 (1996)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fatemeh Ghassemi
    • 1
  • Wan Fokkink
    • 2
  • Ali Movaghar
    • 1
  1. 1.Sharif University of TechnologyTehranIran
  2. 2.Vrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations