Advertisement

Modular Schedulability Analysis of Concurrent Objects in Creol

  • Frank de Boer
  • Tom Chothia
  • Mohammad Mahdi Jaghoori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5961)

Abstract

We present an automata theoretic framework for modular schedulability analysis of real time asynchronous objects modeled in the language Creol. In previous work we analyzed the schedulability of objects modeled as Timed Automata. In this paper, we extend this framework to support enabling conditions for methods and replies to messages and we extend the Creol language to allow the specification of real time information. We provide an algorithm for automatically translating Creol code annotated with this real time information to timed automata. This translation handles synchronization mechanisms in Creol, as well as processor release points. With this translation algorithm, we can analyze end-to-end deadlines, i.e., the deadline on the time since a message is sent until a reply is received.

Keywords

Release Point Method Call Real Time Information Schedulability Analysis Time Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Closse, E., Poize, M., Pulou, J., Sifakis, J., Venter, P., Weil, D., Yovine, S.: TAXYS: A tool for the development and verification of real-time embedded systems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 391–395. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. Formal Methods in System Design 1(4), 385–415 (1992)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  5. 5.
    Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability, decidability and undecidability. Information and Computation 205(8), 1149–1172 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garcia, J.J.G., Gutierrez, J.C.P., Harbour, M.G.: Schedulability analysis of distributed hard real-time systems with multiple-event synchronization. In: Proc. 12th Euromicro Conference on Real-Time Systems, pp. 15–24. IEEE, Los Alamitos (2000)CrossRefGoogle Scholar
  7. 7.
    Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asynchronous real-time concurrent objects. J. Logic and Alg. Prog. 78(5), 402–416 (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    Jaghoori, M.M., Longuet, D., de Boer, F.S., Chothia, T.: Schedulability and compatibility of real time asynchronous objects. In: Proc. Real Time Systems Symposium, pp. 70–79. IEEE CS, Los Alamitos (2008)Google Scholar
  9. 9.
    Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)Google Scholar
  10. 10.
    Kloukinas, C., Yovine, S.: Synthesis of safe, QoS extendible, application specific schedulers for heterogeneous real-time systems. In: Proc. 15th Euromicro Conference on Real-Time Systems (ECRTS 2003), pp. 287–294. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  11. 11.
    Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Computation 164(2), 322–344 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152 (1997)zbMATHGoogle Scholar
  13. 13.
    Meyer, B.: Eiffel: The language. Prentice-Hall, Englewood Cliffs (1992);(first printing: 1991)Google Scholar
  14. 14.
    Nigro, L., Pupo, F.: Schedulability analysis of real time actor systems using coloured petri nets. In: Agha, G.A., De Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 493–513. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Yu, I.C., Johnsen, E.B., Owe, O.: Type-safe runtime class upgrades in Creol. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 202–217. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frank de Boer
    • 1
  • Tom Chothia
    • 1
    • 2
  • Mohammad Mahdi Jaghoori
    • 1
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.School of Computer ScienceUniversity of BirminghamUK

Personalised recommendations