A Comparison of Three Commodity-Level Parallel Architectures: Multi-core CPU, Cell BE and GPU
Conference paper
Abstract
We explore three commodity parallel architectures: multi-core CPUs, the Cell BE processor, and graphics processing units. We have implemented four algorithms on these three architectures: solving the heat equation, inpainting using the heat equation, computing the Mandelbrot set, and MJPEG movie compression. We use these four algorithms to exemplify the benefits and drawbacks of each parallel architecture.
Keywords
Heat Equation Discrete Cosine Transform Memory Access Shared Memory Direct Memory Access
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.IBM, Sony, Toshiba: Cell Broadband Engine programming handbook version 1.1 (2007)Google Scholar
- 2.OpenMP Architecture Review Board: OpenMP application program interface version 2.5 (2005)Google Scholar
- 3.Message Passing Interface Forum: MPI-2: Extensions to the message-passing interface (2003)Google Scholar
- 4.Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: MPI microtask for programming the Cell Broadband Engine processor. IBM Systems Journal 45, 85–102 (2006)CrossRefGoogle Scholar
- 5.Eichenberger, A., O’Brien, J., O’Brien, K., Wu, P., Chen, T., Oden, P., Prener, D., Shepherd, J., So, B., Sura, Z., Wang, A., Zhang, T., Zhao, P., Gschwind, M.: Optimizing compiler for the Cell processor. In: Intl. Conf. on Parallel Architectures and Compilation Techniques, Washington, DC, USA, pp. 161–172. IEEE Computer Society, Los Alamitos (2005)Google Scholar
- 6.Bellens, P., Perez, J., Badia, R., Labarta, J.: CellSs: a programming model for the Cell BE architecture. In: SuperComputing 2006 (2006)Google Scholar
- 7.Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., Purcell, T.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum 26, 80–113 (2007)CrossRefGoogle Scholar
- 8.NVIDIA corporation: NVIDIA CUDA programming guide version 1.1 (2007)Google Scholar
- 9.Buck, I., Foley, T., Horn, D., Sugerman, J., Houston, M., Hanrahan, P.: Brook for GPUs: Stream computing on graphics hardware (2004)Google Scholar
- 10.AMD Corporation: AMD stream computing revision 1.3.0 (2008)Google Scholar
- 11.McCool, M.: Data-parallel programming on the Cell BE and the GPU using the rapidmind development platform. In: GSPx Multicore Applications Conference (2006)Google Scholar
- 12.Khronos OpenCL Working Group: The OpenCL specification 1.0 (2008)Google Scholar
- 13.Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Architecture Review Board. OpenGL Programming Guide: The Official Guide to Learning OpenGL, 6th edn. Addison-Wesley, Reading (2007)Google Scholar
- 14.Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: The potential of the Cell processor for scientific computing. In: Computing Frontiers 2006 (2006)Google Scholar
- 15.Hagen, T., Henriksen, M., Hjelmervik, J., Lie, K.A.: How to solve systems of conservation laws numerically using the graphics processor as a high-performance computational engine. In: Geometric Modelling, Numerical Simulation and Optimization: Industrial Mathematics at SINTEF. Springer, Heidelberg (2007)Google Scholar
- 16.Hagen, T., Rahman, T.: GPU-based image inpainting using a TV-Stokes equation (2008) (preprint)Google Scholar
- 17.Muta, H., Doi, M., Nakano, H., Mori, Y.: Multilevel parallelization on the Cell / B.E. for a motion JPEG 2000 encoding server. In: MULTIMEDIA 2007 (2007)Google Scholar
- 18.IBM: Software development kit for multicore acceleration version 3.0 (2007)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2010