Construction of Rational Curves with Rational Rotation-Minimizing Frames via Möbius Transformations

  • Michael Bartoň
  • Bert Jüttler
  • Wenping Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5862)


We show that Möbius transformations preserve the rotation-minimizing frames which are associated with space curves. In addition, these transformations are known to preserve the class of rational Pythagorean-hodograph curves and rational frames. Based on these observations we derive an algorithm for G 1 Hermite interpolation by rational Pythagorean-hodograph curves with rational rotation-minimizing frames.


rational rotation-minimizing frame Möbius transformations Pythagorean-hodograph curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlfors, L.V.: Möbius transformations in ℝn expressed through 2 ×2 matrices of complex numbers. Complex Variables 2, 215–224 (1986)CrossRefzbMATHGoogle Scholar
  2. 2.
    Beardon, A.F.: Continued Fractions, Möbius transformations and Clifford Algebras. Bull. London Math. Society 35, 302–308 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beffa, G.M.: Poisson brackets associated to the conformal geometry of curves. Trans. Amer. Math. Society 357, 2799–2827 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bishop, R.: There is more than one way to frame a curve. Amer. Math. Monthly 82(3), 246–251 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Choi, H.I., Han, C.Y.: Euler-Rodrigues frames on spatial Pythagorean-hodograph curves. Comput. Aided Geom. Design 19, 603–620 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Choi, H.I., Lee, D.S., Moon, H.P.: Clifford algebra, spin representation and rational parametrization of curves and surfaces. Adv. Comput. Math. 17, 5–48 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Farouki, R.T.: Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves. Graphical Models 64, 382–395 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Farouki, R.T.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Quintic space curves with rational rotation-minimizing frames. Comput. Aided Geom. Design 26, 580–592 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Farouki, R.T., Sakkalis, T.: Pythagorean–hodograph space curves. Adv. Comput. Math. 2, 41–66 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Frankel, T.: The Geometry of Physics. Cambridge University Press, Cambridge (1999)Google Scholar
  12. 12.
    Han, C.Y.: Nonexistence of rational rotation-minimizing frames on cubic curves. Comput. Aided Geom. Design 6, 77–78 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Jüttler, B., Mäurer, C.: Cubic Pythagorean Hodograph Spline Curves and Applications to Sweep Surface Modeling. Comput. Aided Design 31, 73–83 (1999)CrossRefzbMATHGoogle Scholar
  14. 14.
    Jüttler, B.: Generating rational frames of space curves via Hermite interpolation with Pythagorean hodograph cubic splines. In: Geometric Modelling and Processing 1998, pp. 83–106. Bookplus Press, Soul (1998)Google Scholar
  15. 15.
    Leopoldseder, S.: Algorithms on cone spline surfaces and spatial osculating arc splines. Comput. Aided Geom. Design 18, 505–530 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mäurer, C., Jüttler, B.: Rational approximation of rotation minimizing frames using Pythagorean-hodograph cubics. J. Geom. Graph. 3(2), 141–159 (1999)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Meek, D.S., Walton, D.J.: Geometric Hermite interpolation with Tschirnhausen cubics. J. Comput. Appl. Math. 81, 299–309 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pottmann, H., Wagner, M.: Principal Surfaces. In: Goodman, T.N.T., Martin, R.R. (eds.) The Mathematics of Surfaces VII, Information Geometers, Winchester, pp. 337–362 (1997)Google Scholar
  19. 19.
    Pottmann, H., Wagner, M.: Contributions to Motion Based Surface Design. Int. J. of Shape Modeling 4, 183–196 (1998)CrossRefGoogle Scholar
  20. 20.
    Ueda, K.: Spherical Pythagorean-Hodograph Curves. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 485–492. Vanderbilt University Press, Nashville (1998)Google Scholar
  21. 21.
    Wagner, M., Ravani, B.: Curves with Rational Frenet–Serret motion. Comput. Aided Geom. Design 15, 79–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, W., Joe, B.: Robust computation of the rotation minimizing frame for sweep surface modeling. Comput. Aided Design 29, 379–391 (1997)CrossRefGoogle Scholar
  23. 23.
    Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of Rotation Minimizing Frame. ACM Trans. on Graphics 27(1), article no. 2 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Bartoň
    • 1
  • Bert Jüttler
    • 2
  • Wenping Wang
    • 3
  1. 1.Technion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria
  3. 3.Dept. of Computer ScienceUniversity of HongkongChina

Personalised recommendations