Smoothing the Antagonism between Extraordinary Vertex and Ordinary Neighbourhood on Subdivision Surfaces

  • Cédric Gérot
  • François Destelle
  • Annick Montanvert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5862)


Recent methods for tuning a subdivision scheme create a concentric wave pattern around the extraordinary vertex (EV). We explain it as resulting from the antagonism between the rules which would create a nice limit surface at the EV and the ordinary rules used in the surrounding regular surface.

We show that even a scheme which fulfils the most recently proposed conditions for good convergence at the EV may still produce this wave pattern.

Then, in order to smooth this antagonism, we define any new vertex as a convex combination of the ideal new vertex from the EV point of view and the one defined with ordinary rules. The weight of the extraordinary rules decreases as the new vertex is topologically farther from the EV.

The concentric wave pattern shades off whereas the expected conditions are not too much spoiled. This tuning method remains simple and useful, involving no optimisation process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Augsdörfer, U.H., Dodgson, N.A., Sabin, M.A.: Tuning subdivision by minimising Gaussian curvature variation near extraordinary vertices. Computer Graphics Forum 25(3) (2006); (Proc. Eurographics 2006)Google Scholar
  2. 2.
    Barthe, L., Gérot, C., Sabin, M.A., Kobbelt, L.: Simple computation of the eigencomponents of a subdivision matrix in the Fourier domain. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 245–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Barthe, L., Kobbelt, L.: Subdivision scheme tuning around extraordinary vertices. Computer Geometric Aided Design 21(6), 561–583 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design 10(6), 350–355 (1978)CrossRefGoogle Scholar
  5. 5.
    Doo, D., Sabin, M.A.: Behaviour of recursive division surface near extraordinary points. Computer Aided Design 10(6), 356–360 (1978)CrossRefGoogle Scholar
  6. 6.
    Gérot, C., Barthe, L., Dodgson, N.A., Sabin, M.A.: Subdivision as a sequence of sampled cp surfaces. In: Dodgson, N.A., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Ginkel, I., Umlauf, G.: Controlling a subdivision tuning method. In: Cohen, A., Merrien, J.-L., Schumaker, L.L. (eds.) Curve and Surface Fitting: Avignon 2006, pp. 170–179. Nashboro Press (2007)Google Scholar
  8. 8.
    Ivrissimtzis, I., Dodgson, N.A., Sabin, M.A.: A generative classification of mesh refinement rules with lattice transformations. Computer Aided Geometric Design 21(1), 99–109 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kobbelt, L.: \(\sqrt{3}\)-subdivision. In: SIGGRAPH 2000 Conference Proceedings, pp. 103–112 (2000)Google Scholar
  10. 10.
    Karčiauskas, K., Peters, J.: Concentric tessellation maps and curvature continuous guided surfaces. Computer Aided Geometric Design 24(2), 99–111 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Karčiauskas, K., Peters, J., Reif, U.: Shape characterization of subdivision surfaces–case studies. Computer Geometric Aided Design 21(6), 601–614 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Levin, A.: Modified subdivision surfaces with continuous curvature. Computer Graphics 25(3), 1035–1040 (2006); Proc. SIGGRAPH 2006Google Scholar
  13. 13.
    Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah (1987)Google Scholar
  14. 14.
    Loop, C.: Bounded curvature triangle mesh subdivision with the convex hull property. The Visual Computer 18, 316–325 (2002)CrossRefGoogle Scholar
  15. 15.
    Peters, J., Reif, U.: Shape characterization of subdivision surfaces: basic principles. Computer Aided Geometric Design 21(6), 585–599 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Prautzsch, H.: Smoothness of subdivision surfaces at extraordinary points. Adv. Comput. Math. 9, 377–389 (1998)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Prautzsch, H., Umlauf, G.: A g 1 and g 2 subdivision scheme for triangular nets. International Journal on Shape Modelling 6(1), 21–35 (2000)CrossRefGoogle Scholar
  18. 18.
    Reif, U.: A unified approach to subdivision algorithm near extraordinary vertices. Computer Geometric Aided Design 12, 153–174 (1995)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Reif, U.: A degree estimate for subdivision surfaces of higher regularity. Proc. Amer. Math. Soc. 124(7), 2167–2174 (1996)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sabin, M.A.: Eigenanalysis and artifacts of subdivision curves and surfaces. In: Iske, A., Quak, E., Floater, M.S. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 69–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Sabin, M.A., Barthe, L.: Artifacts in recursive subdivision surfaces. In: Cohen, A., Merrien, J.-L., Schumaker, L.L. (eds.) Curve and Surface Fitting: Saint-Malo 2002, pp. 353–362. Nashboro Press (2003)Google Scholar
  22. 22.
    Umlauf, G.: Analysis and tuning of subdivision algorithms. In: SCCG 2005: Proceedings of the 21st spring conference on Computer graphics, pp. 33–40. ACM Press, New York (2005)Google Scholar
  23. 23.
    Velho, L., Zorin, D.: 4-8 subdivision. Computer Geometric Aided Design 18(5), 397–428 (2001)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Warren, J., Warren, J.D., Weimer, H.: Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann Publishers Inc., San Francisco (2001)MATHGoogle Scholar
  25. 25.
    Zorin, D.: Stationary subdivision and multiresolution surface representations. PhD thesis, California Institute of Technology (1997)Google Scholar
  26. 26.
    Zorin, D., Schröder, P.: Subdivision for modeling and animation. In: SIGGRAPH 2000 course notes (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cédric Gérot
    • 1
  • François Destelle
    • 1
  • Annick Montanvert
    • 1
  1. 1.GIPSA-labGrenobleFrance

Personalised recommendations