Haptic Simulator for Prostate Brachytherapy with Simulated Ultrasound

  • Orcun Goksel
  • Septimiu E. Salcudean
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5958)


This paper presents a medical simulator for prostate brachytherapy procedure. Needles are inserted in deformable tissue models using a haptic device while the force feedback computed using a needle-tissue interaction model is rendered on the user’s hand. Transrectal ultrasound images of the region of interest are also displayed in real-time using an interpolation scheme accounting for the mesh-based tissue deformation. Employing a 3D ultrasound volume data reconstructed a priori, this simulation method achieves realistic ultrasound feedback coupled with immediate tissue deformation. Models for simulating tissue deformation using the finite element method are obtained by segmented the relevant anatomy on MR slices. These models are rigidly registered to the ultrasound voxel volume using the prostate surface. The presented simulation system is suitable for brachytherapy training using haptic control/feedback. It can also be used for treatment planning.


Force Feedback Needle Insertion Haptic Feedback Haptic Device TRUS Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Misra, S., Macura, K.J., Ramesh, K.T., Okamura, A.M.: The importance of organ geometry and boundary constraints for planning of medical interventions. Medical Engineering and Physics 31(2), 195–206 (2009)CrossRefGoogle Scholar
  2. 2.
    Goksel, O., Salcudean, S.E.: B-mode ultrasound image simulation in deformable 3-D medium. IEEE Transactions on Medical Imaging 28(11), 1657–1669 (2009)CrossRefGoogle Scholar
  3. 3.
    Misra, S., Ramesh, K.T., Okamura, A.M.: Modeling of tool-tissue interactions for computer-based surgical simulation: A literature review. Presence: Teleoperators & Virtual Environments 17(5), 463–491 (2008)Google Scholar
  4. 4.
    Goksel, O., Salcudean, S.E., DiMaio, S.P.: 3D simulation of needle-tissue interaction with application to prostate brachytherapy. Computer Aided Surgery 11(6), 279–288 (2006)CrossRefGoogle Scholar
  5. 5.
    Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K.K., Goldberg, K., Shewchuk, J.R., O’Brien, J.F.: Interactive simulation of surgical needle insertion and steering. ACM Transactions on Graphics 28(3), 1–10 (2009)CrossRefGoogle Scholar
  6. 6.
    Goksel, O., Dehghan, E., Salcudean, S.E.: Modeling and simulation of flexible needles. Medical Engineering and Physics 31(9), 1069–1078 (2009)CrossRefGoogle Scholar
  7. 7.
    Zhu, M.: Real-time B-mode ultrasound image simulation and artifacts modelling of needles and brachytherapy seeds. Master’s thesis, University of British Columbia (2009)Google Scholar
  8. 8.
    Treece, G., Prager, R., Gee, A., Berman, L.: Surface interpolation from sparse cross sections using region correspondence. IEEE Transactions on Medical Imaging 19(11), 1106–1114 (2000)CrossRefGoogle Scholar
  9. 9.
    Si, H.: TetGen, a quality tetrahedral mesh generator and three-dimensional delaunay triangulator. Technical Report 9, WIAS, Berlin, Germany (2004)Google Scholar
  10. 10.
    Peyré, G., Cohen, L.D.: Geodesic Methods for Shape and Surface Processing. In: Advances in Computational Vision and Medical Image Processing: Methods and Applications, pp. 29–56. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Dehghan, E., Salcudean, S.E.: Needle insertion parameter optimization for brachytherapy. IEEE Transactions on Robotics 25(2), 303–315 (2009)CrossRefGoogle Scholar
  12. 12.
    Salcudean, S., French, D., Bachmann, S., Zahiri-Azar, R., Wen, X., Morris, W.: Viscoelasticity modeling of the prostate region using vibro-elastography. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 389–396. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Hing, J., Brooks, A., Desai, J.: Reality-based estimation of needle and soft-tissue interaction for accurate haptic feedback in prostate brachytherapy simulation. In: Robotics Research. STAR 28, vol. 28, pp. 34–48 (2007)Google Scholar
  14. 14.
    Okamura, A., Simone, C., O’Leary, M.: Force modeling for needle insertion into soft tissue. IEEE Transactions on Biomedical Engineering 51, 1707–1716 (2004)CrossRefGoogle Scholar
  15. 15.
    DiMaio, S.P., Salcudean, S.E.: Interactive simulation of needle insertion models. IEEE Transactions on Biomedical Engineering 52(7), 1167–1179 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Orcun Goksel
    • 1
  • Septimiu E. Salcudean
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations