Six Degree-of Freedom Haptic Rendering for Dental Implantology Simulation

  • Cédric Syllebranque
  • Christian Duriez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5958)


Training systems for dental implantology that are based on virtual reality need a precise haptic feedback with six Degrees of Freedom (6DoF) This is particularly challenging when using real patient data for the jawbone and during the interactive simulation of drilling. In this paper, we present our simulator and two complementary contributions: The first one is a method for 6DoF haptic rendering of contacts between the drilling tool and the jawbone model issued from a CT-scan. The second one is a fast simulation of the jawbone erosion during drilling which is relevant for 6DoF haptic rendering.


Virtual Reality Virtual Environment Collision Detection Haptic Feedback Haptic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binon, P.P.: Treatment planning complications and surgical miscues. J. of Oral and Maxillofacial Surgery 65(7, Suppl. 1), 73–92 (2007)CrossRefGoogle Scholar
  2. 2.
    Ortega, M., Redon, S., Coquillart, S.: A six degree-of-freedom god-object method for haptic display of rigid bodies. In: IEEE Virtual Reality Conf., pp. 191–198 (2006)Google Scholar
  3. 3.
    Lin, M.C., Otaduy, M.A. (eds.): Haptic rendering: Foundations, algorithms and applications. AK Peters (2008)Google Scholar
  4. 4.
    McNeely, W.A., Puterbaugh, K.D., Troy, J.j.: Six degree-of-freedom haptic rendering using voxel sampling (1999)Google Scholar
  5. 5.
    Petersik, A., Pflesser, B., Tiede, U., Hoehne, K.H., Leuwer, R.: Haptic volume interaction with anatomic models at sub-voxel resolution (2002)Google Scholar
  6. 6.
    Edmunds, T., Pai, D.K.: Perceptual rendering for learning haptic skills. In: Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Reno, Nevada, USA (2008)Google Scholar
  7. 7.
    Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display (1995)Google Scholar
  8. 8.
    Kim, L., Sukhatme, G., Desbrun, M.: A haptic-rendering technique based on hybrid surface representation. IEEE Computer Graphics and Applications 24(2), 66–75 (2004)CrossRefGoogle Scholar
  9. 9.
    McNeely, W.A., Puterbaugh, K.D., Troy, J.: Voxel-based 6-dof haptic rendering improvements. Haptic-e 3(7) (January 2006)Google Scholar
  10. 10.
    Barlit, A., Harders, M.: Gpu-based distance map calculation for vector field haptic rendering. In: WHC 2007: Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Washington, DC, USA, pp. 589–590. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  11. 11.
    Agus, M., Giachetti, A., Gobbetti, E., Zannetti, G., Zorcolo, A.: A multiprocessor decoupled system for the simulation of temporal bone surgery. Computing and Visualization in Science (5), 35–43 (2002)Google Scholar
  12. 12.
    Agus, M., Brelstaff, G.J., Giachetti, A., Gobbetti, E., Zanetti, G., Zorcolo, A., Picasso, B., Franceschini, S.S.: Physics-based burr haptic simulation: Tuning and evaluation. In: International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 128–135 (2004)Google Scholar
  13. 13.
    Morris, D., Sewell, C., Barbagli, F., Salisbury, K., Blevins, N.H., Girod, S.: Visuohaptic simulation of bone surgery for training and evaluation. IEEE Computer Graphics and Application (6), 48–57 (2006)Google Scholar
  14. 14.
    Wang, S.M., Chiou, C.H., Cheng, Y.M.: An improved dynamic cutting force model for end-milling process. Journal Mater. Process. Technol. 148, 317–327 (2004)CrossRefGoogle Scholar
  15. 15.
    Marras, I., Papaleontiou, L., Nikolaidis, N., Lyroudia, K., Pitas, I.: Virtual dental patient: a system for virtual teeth drilling. In: 2006 IEEE International Conference on Multimedia and Expo, July 2006, pp. 665–668 (2006)Google Scholar
  16. 16.
    Kusumoto, N., Sohmura, T., Yamada, S., Wakabayashi, K., Nakamura, T., Yatani, H.: Application of virtual reality force feedback haptic device for oral implant surgery. Clin. Oral Impl. Res. (17), 708–713 (2006)Google Scholar
  17. 17.
    Ohtani, T., Kusumoto, N., Wakabayashi, K., Yamada, S., Nakamura, T., Kumazawa, Y., Yatani, H., Sohmura, T.: Application of haptic device to implant dentistry - accuracy verification of drilling into a pig bone. Dental Materials Journal 28(1), 75–81 (2009)CrossRefGoogle Scholar
  18. 18.
    Kim, L., Hwang, Y., Park, S., Ha, S.: Dental training system using multi-modal interface. Computer-Aided Design and Applications 2, 591–598 (2005)Google Scholar
  19. 19.
    Liu, G., Zhang, Y., Wang, D., Townsend, W.T.: Stable haptic interaction using a damping model to implement a realistic tooth-cutting simulation for dental training. Virtual Reality 12(2), 99–106 (2008)CrossRefGoogle Scholar
  20. 20.
    Duriez, C., dubois, F., Andriot, C., Kheddar, A.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Transactions on Visualization and Computer Graphics 12(1), 36–47 (2006)CrossRefGoogle Scholar
  21. 21.
    Sjogreen, K., Ljungberg, M., Strand, S.E.: An Activity Quantification Method Based on Registration of CT and Whole-Body Scintillation Camera Images, with Application to 131I. J. Nucl. Med. 43(7), 972–982 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cédric Syllebranque
    • 1
  • Christian Duriez
    • 2
  1. 1.Didhaptic LavalFrance
  2. 2.INRIA Lille Nord EuropeUniversity of Lille 

Personalised recommendations