Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays

  • Yongjoo Kim
  • Jongeun Lee
  • Aviral Shrivastava
  • Jonghee Yoon
  • Yunheung Paek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5952)


Coarse-Grained Reconfigurable Arrays (CGRAs) are a very promising platform, providing both, up to 10-100 MOps/mW of power efficiency and are software programmable. However, this cardinal promise of CGRAs critically hinges on the effectiveness of application mapping onto CGRA platforms. While previous solutions have greatly improved the computation speed, they have largely ignored the impact of the local memory architecture on the achievable power and performance. This paper motivates the need for memory-aware application mapping for CGRAs, and proposes an effective solution for application mapping that considers the effects of various memory architecture parameters including the number of banks, local memory size, and the communication bandwidth between the local memory and the external main memory. Our proposed solution achieves 62% reduction in the energy-delay product, which factors into about 47% and 28% reduction in the energy consumption and runtime, respectively, as compared to memory-unaware mapping for realistic local memory architectures. We also show that our scheme scales across a range of applications, and memory parameters.


Local Memory Memory Bandwidth Memory Bank Memory Architecture Memory Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bormans, J.: Reconfigurable array processor satisfies multi-core platforms. Chip Design Magazine (2006)Google Scholar
  2. 2.
    Singh, H., Lee, M.-H., Lu, G., Bagherzadeh, N., Kurdahi, F., Filho, E.: Morphosys: An integrated reconfigurable system for data-parallel and computation-intensive applications. IEEE Trans. Comput. 49(5), 465–481 (2000)CrossRefGoogle Scholar
  3. 3.
    Kim, Y., Kiemb, M., Park, C., Jung, J., Choi, K.: Resource sharing and pipelining in coarse-grained reconfigurable architecture for domain-specific optimization. In: DATE 2005, Washington, DC, USA, pp. 12–17. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  4. 4.
    Mei, B., Vernalde, S., Verkest, D., Lauwereins, R.: Design methodology for a tightly coupled vliw/reconfigurable matrix architecture: A case study. In: DATE 2004, p. 21224 (2004)Google Scholar
  5. 5.
    Hartenstein, R.: A decade of reconfigurable computing: a visionary retrospective. In: DATE 2001, Piscataway, NJ, USA, pp. 642–649. IEEE Press, Los Alamitos (2001)Google Scholar
  6. 6.
    Lee, J., Choi, K., Dutt, N.: Compilation approach for coarse-grained reconfigurable architectures. IEEE D&T 20, 26–33 (2003)Google Scholar
  7. 7.
    Lee, J., Choi, K., Dutt, N.: An algorithm for mapping loops onto coarse-grained reconfigurable architectures. ACM SIGPLAN Notices 38(7), 183–188 (2003)CrossRefGoogle Scholar
  8. 8.
    Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: Dresc: a retargetable compiler for coarse-grained reconfigurable architectures, December 2002, pp. 166–173 (2002)Google Scholar
  9. 9.
    Park, H., Fan, K., Kudlur, M., Mahlke, S.: Modulo graph embedding: mapping applications onto coarse-grained reconfigurable architectures. In: CASES 2006, pp. 136–146. ACM, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Hatanaka, A., Bagherzadeh, N.: A modulo scheduling algorithm for a coarse-grain reconfigurable array template. In: IPDPS 2007, March 2007, pp. 1–8 (2007)Google Scholar
  11. 11.
    Ahn, M., Yoon, J., Paek, Y., Kim, Y., Kiemb, M., Choi, K.: A spatial mapping algorithm for heterogeneous coarse-grained reconfigurable architectures. In: DATE 2006, 3001 Leuven, Belgium, pp. 363–368. European Design and Automation Association (2006)Google Scholar
  12. 12.
    Yoon, J., Shrivastava, A., Park, S., Ahn, M., Jeyapaul, R., Paek, Y.: Spkm: a novel graph drawing based algorithm for application mapping onto coarse-grained reconfigurable architectures. In: ASP-DAC 2008, pp. 776–782 (2008)Google Scholar
  13. 13.
    Park, H., Fan, K., Mahlke, S., Oh, T., Kim, H., Kim, H.: Edge-centric modulo scheduling for coarse-grained reconfigurable architectures. In: PACT 2008, pp. 166–176. ACM, New York (2008)CrossRefGoogle Scholar
  14. 14.
    Venkataramani, G., Najjar, W., Kurdahi, F., Bagherzadeh, N., Bohm, W.: A compiler framework for mapping applications to a coarse-grained reconfigurable computer architecture. In: CASES 2001, pp. 116–125. ACM Press, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Lee, W., Barua, R., Frank, M., Srikrishna, D., Babb, J., Sarkar, V., Amarasinghe, S.: Space-time scheduling of instruction-level parallelism on a raw machine. In: ASPLOS-VIII, pp. 46–57 (1998)Google Scholar
  16. 16.
    Bougard, B., De Sutter, B., Verkest, D., Van der Perre, L., Lauwereins, R.: A coarse-grained array accelerator for software-defined radio baseband processing. IEEE Micro 28(4), 41–50 (2008)CrossRefGoogle Scholar
  17. 17.
    Thoziyoor, S., Muralimanohar, N., Ahn, J., Jouppi, N.: Cacti 5.1. Technical report (2008)Google Scholar
  18. 18.
    Dimitroulakos, G., Galanis, M., Goutis, C.: Alleviating the data memory bandwidth bottleneck in coarse-grained reconfigurable arrays. In: ASAP 2005, Washington, DC, USA, pp. 161–168. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  19. 19.
    Lee, J., Choi, K., Dutt, N.: Evaluating memory architectures for media applications on coarse-grained reconfigurable architectures. In: Proc. ASAP, pp. 172–182. IEEE, Los Alamitos (2003)Google Scholar
  20. 20.
    Dimitroulakos, G., Georgiopoulos, S., Galanis, M., Goutis, C.: Resource aware mapping on coarse grained reconfigurable arrays. Microprocess. Microsyst. 33(2), 91–105 (2009)CrossRefGoogle Scholar
  21. 21.
    Guthaus, M., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench: A free, commercially representative embedded benchmark suite. In: IWWC, pp. 3–14 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yongjoo Kim
    • 1
  • Jongeun Lee
    • 2
  • Aviral Shrivastava
    • 3
  • Jonghee Yoon
    • 1
  • Yunheung Paek
    • 1
  1. 1.School of EECSSeoul National UniversitySeoulKorea
  2. 2.School of ECEUlsan National Institute of Science and TechnologyUlsanKorea
  3. 3.Compiler Microarchitecture LabArizona State UniversityUSA

Personalised recommendations