Decision Rule-Based Data Models Using TRS and NetTRS – Methods and Algorithms

  • Marek Sikora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5946)

Abstract

The internet service NetTRS (Network TRS) that enable to realize induction, evaluation, and postprocessing of decision rules is presented in the paper. The TRS (Tolerance Rough Sets) library is the main part of the service. The TRS library makes possible to induct, generalize and filtrate decision rules. Moreover, TRS enables to evaluate rules and conduct the classification process. The NetTRS service is a package of the library in user interface and makes it accessible in the Internet. NetTRS put principal emphasis on induction and postprocessing of decision rules, the paper describes methods and algorithms that are available in the service.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agotnes, T.: Filtering large propositional rule sets while retaining classifier performance. MSc Thesis. Norwegian University of Science and Technology, Trondheim, Norway (1999)Google Scholar
  2. 2.
    Agotnes, T., Komorowski, J., Loken, T.: Taming Large Rule Models in Rough Set Approaches. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 193–203. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    An, A., Cercone, N.: Rule quality measures for rule induction systems – description and evaluation. Computational Intelligence 17, 409–424 (2001)CrossRefGoogle Scholar
  4. 4.
    Bazan, J., Skowron, A., Wang, H., Wojna, A.: Multimodal classification: case studies. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 224–239. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bazan, J.: A comprasion of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methododology and Applications, pp. 321–365. Physica, Heidelberg (1998)Google Scholar
  6. 6.
    Bazan, J., Szczuka, M., Wróblewski, J.: A new version of rough set exploration system. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Breiman, L., Friedman, J., Olshen, R., Stone, R.: Classificzation and Regression Trees. Wadsworth, Pacific Grove (1984)Google Scholar
  8. 8.
    Brazdil, P.B., Togo, L.: Knowledge acquisition via knowledge integration. Current Trends in Knowledge Acquisition. IOS Press, Amsterdam (1990)Google Scholar
  9. 9.
    Bruha, I.: Quality of Decision Rules: Definitions and Classification Schemes for Multiple Rules. In: Nakhaeizadeh, G., Taylor, C.C. (eds.) Machine Learning and Statistics, The Interface, pp. 107–131. Wiley, NY (1997)Google Scholar
  10. 10.
    Brzeziñska, I., Greco, S., Sowiñski, R.: Mining Pareto-optimal rules with respect to support and confirmation or support and anti-support. Engineering Applications of Artificial Intelligence 20, 587–600 (2007)CrossRefGoogle Scholar
  11. 11.
    Duch, W., Adamczak, K., Grbczewski, K.: Methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transaction on Neural Networks 12, 277–306 (2001)CrossRefGoogle Scholar
  12. 12.
    Furnkranz, J., Widmer, G.: Incremental Reduced Error Pruning. In: Proceedings of the Eleventh International Conference of Machine Learning, New Brunswick, NJ, USA, pp. 70–77 (1994)Google Scholar
  13. 13.
    Greco, S., Matarazzo, B., Sowiñski, R.: The use of rough sets and fuzzy sets in MCDM. In: Gal, T., Hanne, T., Stewart, T. (eds.) Advances in Multiple Criteria Decision Making, pp. 1–59. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  14. 14.
    Greco, S., Materazzo, B., Sowiñski, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Greco, S., Pawlak, Z., Sowiñski, R.: Can Bayesian confirmation measures be use-ful for rough set decision rules? Engineering Applications of Artificial Intelligence 17, 345–361 (2004)CrossRefGoogle Scholar
  16. 16.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company Inc., Boston (1989)MATHGoogle Scholar
  17. 17.
    Góra, G., Wojna, A.: RIONA: A new classification system combining rule induction and instance-based learning. Fundamenta Informaticae 51(4), 369–390 (2002)MATHMathSciNetGoogle Scholar
  18. 18.
    Grzymaa-Busse, J.W.: LERS - a system for learning from examples based on rough sets. In: Sowiñski, R. (ed.) Intelligent Decision Support. Handbook of applications and advances of the rough set theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  19. 19.
    Grzymaa-Busse, J.W., Ziarko, W.: Data mining based on rough sets. In: Wang, J. (ed.) Data Mining Opportunities and Challenges, pp. 142–173. IGI Publishing, Hershey (2003)Google Scholar
  20. 20.
    Guillet, F., Hamilton, H.J. (eds.): Quality Measures in Data Mining. Computational Intelligence Series. Springer, Heidelberg (2007)MATHGoogle Scholar
  21. 21.
    Kanonenko, I., Bratko, I.: Information-based evaluation criterion for classifier‘s performance. Machine Learning 6, 67–80 (1991)Google Scholar
  22. 22.
    Kaufman, K.A., Michalski, R.S.: Learning in Inconsistent World, Rule Selection in STAR/AQ18. Machine Learning and Inference Laboratory Report P99-2 (February 1999)Google Scholar
  23. 23.
    Kubat, M., Bratko, I., Michalski, R.S.: Machine Learning and Data Mining: Methods and Applications. Wiley, NY (1998)Google Scholar
  24. 24.
    Latkowski, R., Mikoajczyk, M.: Data Decomposition and Decision Rule Joining for Classification of Data with Missing Values. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 299–320. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Michalski, R.S., Carbonell, J.G., Mitchel, T.M.: Machine Learning, vol. I. Morgan-Kaufman, Los Altos (1983)Google Scholar
  26. 26.
    Mikoajczyk, M.: Reducing number of decision rules by joining. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 425–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Nguyen, H.S., Nguyen, S.H.: Some Efficient Algorithms for Rough Set Methods. In: Proceedings of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada, Spain, pp. 1451–1456 (1996)Google Scholar
  28. 28.
    Nguyen, H.S., Nguyen, T.T., Skowron, A., Synak, P.: Knowledge discovery by rough set methods. In: Callaos, N.C. (ed.) Proc. of the International Conference on Information Systems Analysis and Synthesis, ISAS 1996, Orlando, USA, July 22-26, pp. 26–33 (1996)Google Scholar
  29. 29.
    Nguyen, H.S., Skowron, A.: Searching for relational patterns in data. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 265–276. Springer, Heidelberg (1997)Google Scholar
  30. 30.
    Nguyen, H.S., Skowron, A., Synak, P.: Discovery of data patterns with applications to decomposition and classfification problems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, pp. 55–97. Physica, Heidelberg (1998)Google Scholar
  31. 31.
    Nguyen, H.S.: Data regularity analysis and applications in data mining. Doctoral Thesis, Warsaw University. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough set methods and applications: New developments in knowledge discovery in information systems, pp. 289–378. Physica-Verlag/Springer, Heidelberg (2000), http://logic.mimuw.edu.pl/ Google Scholar
  32. 32.
    Ohrn, A., Komorowski, J., Skowron, A., Synak, P.: The design and implementation of a knowledge discovery toolkit based on rough sets: The ROSETTA system. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications, pp. 376–399. Physica, Heidelberg (1998)Google Scholar
  33. 33.
    Pawlak, Z.: Rough Sets. Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)MATHGoogle Scholar
  34. 34.
    Pednault, E.: Minimal-Length Encoding and Inductive Inference. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 71–92. MIT Press, Cambridge (1991)Google Scholar
  35. 35.
    Pindur, R., Susmaga, R., Stefanowski, J.: Hyperplane aggregation of dominance decision rules. Fundamenta Informaticae 61, 117–137 (2004)MATHMathSciNetGoogle Scholar
  36. 36.
    Podraza, R., Walkiewicz, M., Dominik, A.: Credibility coefficients in ARES Rough Sets Exploration Systems. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 29–38. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan-Kaufman, San Mateo (1993)Google Scholar
  38. 38.
    Prêdki, B., Sowiñski, R., Stefanowski, J., Susmaga, R.: ROSE – Software implementation of the rough set theory. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, p. 605. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  39. 39.
    Sikora, M., Proksa, P.: Algorithms for generation and filtration of approximate decision rules, using rule-related quality measures. In: Proceedings of International Workshop on Rough Set Theory and Granular Computing (RSTGC 2001), Matsue, Shimane, Japan, pp. 93–98 (2001)Google Scholar
  40. 40.
    Sikora, M.: Rules evaluation and generalization for decision classes descriptions improvement. Doctoral Thesis, Silesian University of Technology, Gliwice, Poland (2001) (in Polish)Google Scholar
  41. 41.
    Sikora, M., Proksa, P.: Induction of decision and association rules for knowledge discovery in industrial databases. In: International Conference on Data Mining, Alternative Techniques for Data Mining Workshop, Brighton, UK (2004)Google Scholar
  42. 42.
    Sikora, M.: Approximate decision rules induction algorithm using rough sets and rule-related quality measures. Theoretical and Applied Informatics 4, 3–16 (2004)MathSciNetGoogle Scholar
  43. 43.
    Sikora, M.: An algorithm for generalization of decision rules by joining. Foundation on Computing and Decision Sciences 30, 227–239 (2005)Google Scholar
  44. 44.
    Sikora, M.: System for geophysical station work supporting - exploitation and development. In: Proceedings of the 13th International Conference on Natural Hazards in Mining, Central Mining Institute, Katowice, Poland, pp. 311–319 (2006) (in Polish)Google Scholar
  45. 45.
    Sikora, M.: Rule quality measures in creation and reduction of data role models. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 716–725. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  46. 46.
    Sikora, M.: Adaptative application of quality measures in rules induction algorithms. In: Kozielski, S. (ed.) Databases, new technologies, vol. I. Transport and Communication Publishers (Wydawnictwa Komunikacji i Łączności), Warsaw (2007) (in Polish)Google Scholar
  47. 47.
    Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Informa-tion systems. In: Sowiñski, R. (ed.) Intelligent Decision Support. Handbook of applications and advances of the rough set theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  48. 48.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 224–239. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  49. 49.
    Skowron, A., Wang, H., Wojna, A., Bazan, J.: Multimodal Classification: Case Studies. Fundamenta Informaticae 27, 245–253 (1996)MATHMathSciNetGoogle Scholar
  50. 50.
    Sowiñski, R., Greco, S., Matarazzo, B.: Mining decision-rule preference model from rough approximation of preference relation. In: Proceedings of the 26th IEEE Annual Int. Conf. on Computer Software and Applications, Oxford, UK, pp. 1129–1134 (2002)Google Scholar
  51. 51.
    Stefanowski, J.: Rough set based rule induction techniques for classification problems. In: Proceedings of the 6th European Congress of Intelligent Techniques and Soft Computing, Aachen, Germany, pp. 107–119 (1998)Google Scholar
  52. 52.
    Stefanowski, J.: Algorithms of rule induction for knowledge discovery. Poznañ University of Technology, Thesis series 361, Poznañ, Poland (2001) (in Polish)Google Scholar
  53. 53.
    Smyth, P., Gooodman, R.M.: Rule induction using information theory. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 159–176. MIT Press, Cambridge (1991)Google Scholar
  54. 54.
    Stepaniuk, J.: Knowledge Discovery by Application of Rough Set Models. Institute of Computer Sciences Polish Academy of Sciences, Reports 887, Warsaw, Poland (1999)Google Scholar
  55. 55.
    Stepaniuk, J., Krêtowski, M.: Decision System Based on Tolerance Rough Sets. In: Proceedings of the 4th International Workshop on Intelligent Information Systems, Augustów, Poland, pp. 62–73 (1995)Google Scholar
  56. 56.
    Ślęzak, D., Wróblewski, J.: Classification Algorithms Based on Linear Combination of Features. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 548–553. Springer, Heidelberg (1999)Google Scholar
  57. 57.
    Wang, H., Duentsch, I., Gediga, G., Skowron, A.: Hyperrelations in version space. International Journal of Approximate Reasoning 36(3), 223–241 (2004)MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Wojna, A.: Analogy based reasoning in classifier construction. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 277–374. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  59. 59.
    Ziarko, W.: Variable precision rough sets model. Journal of Computer and System Sciences 46, 39–59 (1993)MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Zhong, N., Skowron, A.: A rough set-based knowledge discovery process. International Journal of Applied Mathematics and Computer Sciences 11, 603–619 (2001)MATHMathSciNetGoogle Scholar
  61. 61.
    Yao, Y.Y., Zhong, N.: An Analysis of Quantitative Measures Associated with Rules. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 479–488. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marek Sikora
    • 1
  1. 1.Institute of Computer SciencesSilesian University of TechnologyGliwicePoland

Personalised recommendations