On Gossip and Populations

  • Marin Bertier
  • Yann Busnel
  • Anne-Marie Kermarrec
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5869)

Abstract

Gossip protocols are simple, robust and scalable and have been consistently applied to many (mostly wired) distributed systems. Nevertheless, most validation in this area has been empirical so far and there is a lack of a theoretical counterpart to characterize what can and cannot be computed with gossip protocols.

Population protocols, on the other hand, benefit from a sound theoretical framework but little empirical evaluation. In this paper, we establish a correlation between population and gossip-based protocols. We propose a classification of gossip-based protocols, based on the nature of the underlying peer sampling service. First, we show that the class of gossip protocols, where each node relies on an arbitrary sample, is equivalent to population protocols. Second, we show that gossip-based protocols, relying on a more powerful peer sampling service providing peers using a clearly identified set of other peers, are equivalent to community protocols, a modern variant of population protocols.

Leveraging the resemblances between population and gossip protocols enables to provide a theoretical framework for distributed systems where global behaviors emerge from a set of local interactions, both in wired and wireless settings. The practical validations of gossip-protocols provide empirical evidence of quick convergence times of such algorithms and demonstrate their practical relevance. While existing results in each area can be immediately applied, this also leaves the space to transfer any new results, practical or theoretical, from one domain to the other.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing (Special Issue: PODC 2004) 18(4), 235–253 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. Distributed Computing (Special Issue: DISC 2007) 21(2), 183–199 (2008)CrossRefMATHGoogle Scholar
  3. 3.
    Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: 25th annual ACM Symposium on Principles of Distributed Computing (PODC 2006), August 2006, pp. 292–299 (2006)Google Scholar
  4. 4.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing (Special Issue: PODC 2006) 20(4), 279–304 (2007)CrossRefMATHGoogle Scholar
  5. 5.
    Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the European Association for Theoretical Computer Science, Distributed Computing Column 93, 98–117 (2007)MathSciNetMATHGoogle Scholar
  7. 7.
    Busnel, Y., Bertier, M., Fleury, E., Kermarrec, A.-M.: GCP: Gossip-based code propagation for large-scale mobile WSN. In: The First International Conference on Autonomic Computing and Communication Systems (Autonomics 2007) (October 2007)Google Scholar
  8. 8.
    Busnel, Y., Bertier, M., Kermarrec, A.-M.: On the Impact of the Mobility on Convergence Speed of Population Protocols. Research Report RR-6580, INRIA, Rennes, France (July 2008)Google Scholar
  9. 9.
    Busnel, Y., Bertier, M., Kermarrec, A.-M.: Bridging the Gap between Population and Gossip-based Protocols. Research Report RR-6720, INRIA, Rennes, France (November 2008)Google Scholar
  10. 10.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die: Making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: 6th ACM Symposium on Principles of Distributed Computing (PODC 1987) (1987)Google Scholar
  12. 12.
    Dionysios, K., Psaltoulis, D., Gupta, I., Birman, K., Demers, A.: Active and passive techniques for group size estimation in large-scale and dynamic distributed systems. Elsevier Journal of Systems and Software 80, 1639–1658 (2007)CrossRefGoogle Scholar
  13. 13.
    Eugster, P.T., Handurukande, S., Guerraoui, R., Kermarrec, A.-M., Kouznetsov, P.: Lightweight probabilistic broadcast. ACM Transactions on Computer Systems 21(4), 341–374 (2003)CrossRefGoogle Scholar
  14. 14.
    Eugster, P.T., Guerraoui, R., Kermarrec, A.-M., Massoulié, L.: Epidemic information dissemination in distributed systems. IEEE Computer 37(5), 60–67 (2004)CrossRefGoogle Scholar
  15. 15.
    Gavidia, D., Voulgaris, S., van Steen, M.: Epidemic-style monitoring in large-scale wireless sensor networks. Technical Report IR-CS-012, Vrije Universiteit Amsterdam (2005)Google Scholar
  16. 16.
    Georgiou, C., Gilbert, S., Guerraoui, R., Kowalski, D.R.: On the complexity of asynchronous gossip. In: 27th annual ACM Symposium on Principles of Distributed Computing (PODC 2008), August 2008, pp. 135–144 (2008)Google Scholar
  17. 17.
    Guerraoui, R., Ruppert, E.: Even small birds are unique: Population protocols with identifiers. Technical Report CSE-2007-04, Dept of Computer Science and Engineering, York University (September 2007)Google Scholar
  18. 18.
    Jelasity, M., Babaoglu, O.: T-Man: Fast gossip-based construction of large-scale overlay topologies. Technical Report UBLCS-2004-7, University of Bologna, Department of Computer Science, Bologna, Italy (May 2004)Google Scholar
  19. 19.
    Jelasity, M., Kermarrec, A.-M.: Ordered slicing of very large-scale overlay networks. In: 6th IEEE International Conference on Peer-to-Peer Computing (P2P 2006), September 2006, pp. 117–124 (2006)Google Scholar
  20. 20.
    Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Transactions on Computer Systems 23(3), 219–252 (2005)CrossRefGoogle Scholar
  21. 21.
    Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-based peer sampling. ACM Transactions on Computer Systems 25(3), 8 (2007)CrossRefGoogle Scholar
  22. 22.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), October 2003, pp. 482–491 (2003)Google Scholar
  23. 23.
    Kermarrec, A.-M., Massoulié, L., Ganesh, A.J.: Probabilistic reliable dissemination in large-scale systems. IEEE Transactions on Parallel and Distributed Systems 14(3) (March 2003)Google Scholar
  24. 24.
    Kermarrec, A.-M., van Steen, M. (eds.): ACM Operating Systems Review on Gossip Potocols 41(5) (October 2007)Google Scholar
  25. 25.
    Massoulié, L., Le Merrer, E., Kermarrec, A.-M., Ganesh, A.: Peer counting and sampling in overlay networks: random walk methods. In: 25th ACM Symposium on Principles of Distributed Computing (PODC 2006), July 2006, pp. 123–132 (2006)Google Scholar
  26. 26.
    van Renesse, R.: Power-aware epidemics. In: International Workshop on Reliable Peer-to-Peer Systems (2002)Google Scholar
  27. 27.
    Simonton, E., Kyu Choi, B., Seidel, S.: Using gossip for dynamic ressource discovery. In: 35th International Conference on Parallel Processing (ICPP 2006), August 2006, pp. 319–328 (2006)Google Scholar
  28. 28.
    Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership management for unstructured P2P overlays. Journal of Network System Management 13(2) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marin Bertier
    • 1
  • Yann Busnel
    • 2
  • Anne-Marie Kermarrec
    • 3
  1. 1.INSA RennesFrance
  2. 2.University of Rennes 1France
  3. 3.INRIA Rennes – Bretagne AtlantiqueFrance

Personalised recommendations