Advertisement

An Efficient Self-stabilizing Distance-2 Coloring Algorithm

  • Jean Blair
  • Fredrik Manne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5869)

Abstract

We present a self-stabilizing algorithm for the distance-2 coloring problem that uses a constant number of variables on each node and that stabilizes in O2 m) moves using at most Δ2 + 1 colors, where Δ is the maximum degree in the graph and m is the number of edges in the graph. The analysis holds true both for the sequential and the distributed adversarial daemon model. This should be compared with the previous best self-stabilizing algorithm for this problem which stabilizes in O(nm) moves under the sequential adversarial daemon and in O(n 3 m) time steps for the distributed adversarial daemon and which uses O(δ i ) variables on each node i, where δ i is the degree of node i.

Keywords

Bipartite Graph Planar Graph Step Complexity Coloring Algorithm Frequency Assignment Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aardal, K.I., van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Ann. Op. Res. 153, 79–129 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chaudhuri, P., Thompson, H.: A self-stabilizing distributed algorithm for edge-coloring general graphs. Aust. J. Comb. 38, 237–248 (2007)MathSciNetMATHGoogle Scholar
  3. 3.
    Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P., McRae, A.A.: Distance-two information in self-stabilizing algorithms. Par. Proc. L. 14, 387–398 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs. Dist. Comp. 7, 55–59 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing algorithms for orderings and colorings. Int. J. Found. Comp. Sci. 16, 19–36 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under unfair scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloring of arbitrary graphs. In: OPODIS 2000, pp. 55–70 (2000)Google Scholar
  8. 8.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing coloring. Inf. Proc. Lett. 87, 251–255 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Huang, S.-T., Hung, S.-S., Tzeng, C.-H.: Self-stabilizing coloration in anonymous planar networks. Inf. Proc. Lett. 95, 307–312 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kosowski, A., Kuszner, L.: Self-stabilizing algorithms for graph coloring with improved performance guarantees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1150–1159. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Shukla, S., Rosenkrantz, D., Ravi, S.: Developing self-stabilizing coloring algorithms via systematic randomization. In: Proc. Int. Workshop on Par. Process., pp. 668–673 (1994)Google Scholar
  12. 12.
    Shukla, S.K., Rosenkrantz, D., Ravi, S.S.: Observations on self-stabilizing graph algorithms for anonymous networks. In: Proc. of the Second Workshop on Self-stabilizing Systems, pp. 7.1–7.15 (1995)Google Scholar
  13. 13.
    Sun, H., Effantin, B., Kheddouci, H.: A self-stabilizing algorithm for the minimum color sum of a graph. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 209–214. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Sur, S., Srimani, P.K.: A self-stabilizing algorithm for coloring bipartite graphs. Inf. Sci. 69, 219–227 (1993)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Tzeng, C.-H., Jiang, J.-R., Huang, S.-T.: A self-stabilizing (δ + 4)-edge-coloring algorithm for planar graphs in anonymous uniform systems. Inf. Proc. Lett. 101, 168–173 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jean Blair
    • 1
  • Fredrik Manne
    • 2
  1. 1.Department of EE and CSUnited States Military Academy West PointUSA
  2. 2.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations