An Efficient Simulation of Polynomial-Space Turing Machines by P Systems with Active Membranes

  • Andrea Valsecchi
  • Antonio E. Porreca
  • Alberto Leporati
  • Giancarlo Mauri
  • Claudio Zandron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)

Abstract

We show that a deterministic single-tape Turing machine, operating in polynomial space with respect to the input length, can be efficiently simulated (both in terms of time and space) by a semi-uniform family of P systems with active membranes and three polarizations, using only communication rules. Then, basing upon this simulation, we prove that a result similar to the space hierarchy theorem can be obtained for P systems with active membranes: the larger the amount of space we can use during the computations, the harder the problems we are able to solve.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae 58(2), 67–77 (2003)MathSciNetGoogle Scholar
  2. 2.
    Alhazov, A., Freund, R.: On the efficiency of P systems with active membranes and two polarizations. In: Mauri, G., et al. (eds.) Membrane Computing, pp. 81–94. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Balcázar, J.L., Díaz, J., Gabarró, J.: Structural Complexity I, 2nd edn. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: P systems with active membranes, without polarizations and without dissolution: A characterization of P. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 105–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Gutiérrez-Naranjo, M.-A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: On the power of dissolution in P systems with active membranes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J., Romero-Jiménez, A.: Characterizing tractability by cell-like membrane systems. In: Subramanian, K.G., Rangarajan, K., Mukund, M. (eds.) Formal Models, Languages and Applications. Machine Perception and Artificial Intelligence, vol. 66, pp. 137–154. World Scientific, Singapore (2006)Google Scholar
  7. 7.
    Ibarra, O.H.: On the computational complexity of membrane systems. Theoretical Computer Science 320, 89–104 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kobayashi, K.: On proving time constructibility of functions. Theoretical Computer Science 35, 215–225 (1985)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Krishna, S.N., Rama, R.: A variant of P systems with active membranes: Solving NP-complete problems. Romanian Journal of Information Science and Technology 2(4), 357–367 (1999)Google Scholar
  10. 10.
    Obtulowicz, A.: Deterministic P systems for solving SAT problem. Romanian Journal of Information Science and Technology 4(1-2), 551–558 (2001)MathSciNetGoogle Scholar
  11. 11.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 1(61), 108–143 (2000)CrossRefGoogle Scholar
  12. 12.
    Păun, G.: P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)MATHMathSciNetGoogle Scholar
  13. 13.
    Păun, G.: Membrane computing. An introduction. Springer, Berlin (2002)MATHGoogle Scholar
  14. 14.
    Jesús Pérez-Jímenez, M., Romero-Jiménez, A., Sancho-Caparrini, F.: The P versus NP problem through cellular computing with membranes. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 338–352. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial complexity class in P systems using membrane division. In: Csuhaj-Varjú, E., et al. (eds.) Proc. Fifth Workshop on Descriptional Complexity of Formal Systems, DCFS 2003, Computer and Automation Research Institute of the Hungarian Academy of Sciences, Budapest, pp. 284–294 (2003)Google Scholar
  16. 16.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complexity measure for P systems. International Journal of Computers, Communications & Control 4(3), 301–310 (2009)Google Scholar
  17. 17.
    Porreca, A.E., Mauri, G., Zandron, C.: Complexity classes for membrane systems. RAIRO Theoretical Informatics and Applications 40(2), 141–162 (2006)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Course Technology (2005)Google Scholar
  19. 19.
    Sosík, P.: The computational power of cell division in P systems: Beating down parallel computers? Natural Computing 2(3), 287–298 (2003)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, pp. 289–301. Springer, Heidelberg (2000)Google Scholar
  21. 21.
    Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M.J.: On the computational efficiency of polarizationless recognizer P systems with strong division and dissolution. Fundamenta Informaticae 87(1), 79–91 (2008)MATHMathSciNetGoogle Scholar
  22. 22.
    The P Systems Webpage, http://ppage.psystems.eu

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andrea Valsecchi
    • 1
  • Antonio E. Porreca
    • 1
  • Alberto Leporati
    • 1
  • Giancarlo Mauri
    • 1
  • Claudio Zandron
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations