Advertisement

Tuning P Systems for Solving the Broadcasting Problem

  • Raluca Lefticaru
  • Florentin Ipate
  • Marian Gheorghe
  • Gexiang Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)

Abstract

P systems are employed in various contexts to specify or model different problems. In certain cases the system is not entirely known. In this paper we will consider the broadcasting algorithm and present a method to determine the format of the rules of the P system used to specify the algorithm.

Keywords

Genetic Algorithm Tree Node Space Size Uniform Crossover Communication Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Besozzi, D., Zandron, C., Mauri, G., Sabadini, N.: P systems with gemmation of mobile membranes. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 136–153. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bottoni, P., Martín-Vide, C., Pǎun, Gh., Rozenberg, G.: Membrane systems with promoters/inhibitors. Acta Informatica 38(10), 695–720 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Castellini, A., Manca, V.: Learning regulation functions of metabolic systems by artificial neural networks. In: Rothlauf, F. (ed.) GECCO 2009, pp. 193–200. ACM, New York (2009)CrossRefGoogle Scholar
  4. 4.
    Castellini, A., Manca, V., Suzuki, Y.: Metabolic P system flux regulations by artificial neural networks. In: Pǎun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Cavaliere, M., Mardare, R.: Partial knowledge in membrane systems: A logical approach. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 279–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Ciobanu, G.: Distributed algorithms over communicating membrane systems. Biosystems 70(2), 123–133 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Drake, S.: Uniform crossover revisited: Maximum disruption in real-coded GAs. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1576–1577. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Ipate, F., Gheorghe, M.: Testing non-deterministic stream X-machine models and P systems. Electr. Notes Theor. Comput. Sci. 227, 113–126 (2009)CrossRefGoogle Scholar
  9. 9.
    Meffert, K., et al.: JGAP - Java Genetic Algorithms and Genetic Programming Package, http://jgap.sf.net
  10. 10.
    Pǎun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Pǎun, Gh.: Membrane computing. An introduction. Springer, Berlin (2002)Google Scholar
  12. 12.
    Pǎun, Gh., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287(1), 73–100 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Romero-Campero, F.J., Cao, H., Cámara, M., Krasnogor, N.: Structure and parameter estimation for cell systems biology models. In: Ryan, C., Keijzer, M. (eds.) GECCO 2008, pp. 331–338. ACM, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Raluca Lefticaru
    • 1
  • Florentin Ipate
    • 1
  • Marian Gheorghe
    • 1
    • 2
  • Gexiang Zhang
    • 3
  1. 1.Department of Computer ScienceUniversity of PiteştiPiteştiRomania
  2. 2.Department of Computer ScienceUniversity of SheffieldSheffieldUK
  3. 3.School of Electrical EngineeringSouthwest Jiaotong UniversityChengduP.R. China

Personalised recommendations