Modelling Signalling Networks with Incomplete Information about Protein Activation States: A P System Framework of the KaiABC Oscillator

  • Thomas Hinze
  • Thorsten Lenser
  • Gabi Escuela
  • Ines Heiland
  • Stefan Schuster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)

Abstract

Reconstruction of signal transduction network models based on incomplete information about network structure and dynamical behaviour is a major challenge in current systems biology. In particular, interactions within signalling networks are frequently characterised by partially unknown protein phosphorylation and dephosphorylation cascades at a submolecular description level. For prediction of promising network candidates, reverse engineering techniques typically enumerate the reaction search space. Considering an underlying amount of phosphorylation sites, this implies a potentially exponential number of individual reactions in conjunction with corresponding protein activation states. To manage the computational complexity, we extend P systems with string-objects by a subclass for protein representation able to process wild-carded together with specific information about protein binding domains and their ligands. This variety of reactants works together with assigned term-rewriting mechanisms derived from discretised reaction kinetics. We exemplify the descriptional capability and flexibility of the framework by discussing model candidates for the circadian clock formed by the KaiABC oscillator found in the cyanobacterium Synechococcus elongatus. A simulation study of its dynamical behaviour demonstrates effects of superpositioned protein abundance courses based on regular expressions corresponding to dedicated protein activation states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall, Boca Raton (2006)MATHGoogle Scholar
  2. 2.
    Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arkin, A.P.: Synthetic cell biology. Current Opinion in Biotechnology 12(6), 638–644 (2001)CrossRefGoogle Scholar
  4. 4.
    Axmann, I.M., Legewie, S., Herzel, H.: A minimal circadian clock model. Genome Inform. 18, 54–64 (2007)CrossRefGoogle Scholar
  5. 5.
    Bernardini, F., Manca, V.: Dynamical aspects of P systems. BioSystems 70, 85–93 (2003)CrossRefGoogle Scholar
  6. 6.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: Software for Rule-Based Modeling of Signal Transduction Based on the Interactions of Molecular Domains. Bioinformatics 20, 3289–3292 (2004)CrossRefGoogle Scholar
  7. 7.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems 83, 136–151 (2006)CrossRefGoogle Scholar
  8. 8.
    Clodong, S., Dühring, U., Kronk, L., Wilde, A., Axmann, I.M., Herzel, H., Kollmann, M.: Functioning and robustness of a bacterial circadian clock. Molecular Systems Biology 90(3), 1–9 (2007)Google Scholar
  9. 9.
    Connors, K.A.: Chemical Kinetics. VCH Publishers, Weinheim (1990)Google Scholar
  10. 10.
    Eils, R., Kriebe, A. (eds.): Computational Systems Biology. Academic Press, London (2005)Google Scholar
  11. 11.
    Golden, S.S., Cassone, V.M., LiWang, A.: Shifting nanoscopic clock gears. Nature Structural and Molecular Biology 14, 362–363 (2007)CrossRefGoogle Scholar
  12. 12.
    Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Hinze, T., Lenser, T., Dittrich, P.: A protein substructure based P system for description and analysis of cell signalling networks. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 409–423. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Hinze, T., Fassler, R., Lenser, T., Dittrich, P.: Register machine computations on binary numbers by oscillating and catalytic chemical reactions modelled using mass-action kinetics. International Journal of Foundations of Computer Science 20(3), 411–426 (2009)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice: Concepts, Implementation, and Application. Wiley-VCH, Chichester (2006)Google Scholar
  16. 16.
    Lenser, T., Hinze, T., Ibrahim, B., Dittrich, P.: Towards evolutionary network reconstruction tools for systems biology. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 132–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Magnasco, M.O.: Chemical kinetics is Turing universal. Physical Review Letters 78(6), 1190–1193 (1997)CrossRefGoogle Scholar
  18. 18.
    Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in P systems: Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Miyoshi, F., Nakayama, Y., Kaizu, K., Iwasaki, H., Tomita, M.: A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria. Journal of Biological Rhythms 22(1), 69–80 (2007)CrossRefGoogle Scholar
  20. 20.
    Mori, T., Williams, D.R., Byrne, M.O., Qin, X., Egli, M., Mchaourab, H.S., Stewart, P.L., Johnson, C.H.: Elucidating the ticking of an in vitro circadian clockwork. PLoS Biology 5(4), 841–853 (2007)CrossRefGoogle Scholar
  21. 21.
    Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y.: Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005)CrossRefGoogle Scholar
  22. 22.
    Paranjpe, D.A., Sharma, V.K.: Evolution of temporal order in living organisms. Journal of Circadian Rhythms 3, 7 (2005)CrossRefGoogle Scholar
  23. 23.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Rosato, E.: Circadian Rhythms: Methods and Protocols. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Roussel, M.R., Gonze, D., Goldbeter, A.: Modeling the differential fitness of cyanobacterial strains whose circadian oscillators have different free-running periods. J. Theor. Biol. 205(2), 321–340 (2000)CrossRefGoogle Scholar
  26. 26.
    Schuster, S., Zevedei-Oancea, I.: A theoretical framework for detecting signal transfer routes in signalling networks. Comput. Chem. Eng. 29, 597–617 (2005)CrossRefGoogle Scholar
  27. 27.
    Tomita, J., Nakajima, M., Kondo, T., Iwasaki, H.: No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251–254 (2005)CrossRefGoogle Scholar
  28. 28.
    Xu, Y., Mori, T., Johnson, C.H.: Circadian clock-protein expression in cyanobacteria: rhythms and phase-setting. EMBO Journal 19, 3349–3357 (2007)CrossRefGoogle Scholar
  29. 29.
    Yoda, M., Eguchi, K., Terada, T.P., Sasai, M.: Monomer-shuffling and allosteric transition in KaiC circadian oscillation. PLoS ONE 5, 1–7 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Hinze
    • 1
  • Thorsten Lenser
    • 2
  • Gabi Escuela
    • 2
  • Ines Heiland
    • 1
  • Stefan Schuster
    • 1
  1. 1.School of Biology and Pharmacy, Department of BioinformaticsFriedrich-Schiller University JenaJenaGermany
  2. 2.Department of Computer Science, Bio Systems Analysis GroupFriedrich-Schiller University JenaJenaGermany

Personalised recommendations