Insecticidal and Nematicidal Metabolites from Fungi

Chapter
Part of the The Mycota book series (MYCOTA, volume 10)

Abstract

This chapter is an update of the chapter which appeared in The Mycota, Vol. X in 2002. Not many novel compounds with nematicidal and insecticidal activities have been described in the meantime. Therefore, we have shifted focus from the chemical diversity of fungal metabolites and their producing organisms towards novel insights into the mode of action and the ecological significance of the compounds, e.g. their role for insect pathogens during colonization of the host.

References

  1. Abe M, Imai T, Ishii N, Usui M, Okuda T, Oki T (2005) Quinolactacide, a new quinolone insecticide from Penicillium citrinum. Biosci Biotechnol Biochem 69:1202–1205CrossRefGoogle Scholar
  2. Abe M, Imai T, Ishii N, Usui M (2006) Synthesis of quinolactacide via an acyl migration reaction and dehydrogenation with manganese dioxide, and its insecticidal activities. Biosci Biotechnol Biochem 70:303–306CrossRefGoogle Scholar
  3. Amiri-Besheli B, Khambay B, Cameron S, Deadman ML, Butt TM (2000) Inter- and intra-specific variation in destruxin production by insect pathogenic Metarhizium spp., and its significance to pathogenesis. Mycol Res 104:447–452CrossRefGoogle Scholar
  4. Anke H, Antelo L (2009) Cyclic peptides and depsipeptides from fungi. In: Anke T, Weber D (eds) Physiology and genetics. Mycota XV. Springer, Berlin Heidelberg New York, pp 273–296CrossRefGoogle Scholar
  5. Anke H, Sterner O (2002) Insecticidal and nematicial metabolites from fungi. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Berlin Heidelberg New York, pp 109–127Google Scholar
  6. Aoyagi A, Yano T, Kozuma S, Takatsu T (2007) Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. J Antibiot 60:143–152CrossRefGoogle Scholar
  7. Arai N, Shiomi K, Iwai Y, Omura S (2000) Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J Antibiot 53:609–614CrossRefGoogle Scholar
  8. Arai T, Mikami Y, Fukushima K, Utsumi T, Yazawa K (1973) A new antibiotic, leucinostatin, derived from Penicillium lilacinum. J Antibiot 26:157–161CrossRefGoogle Scholar
  9. Bandani AR, Khambay BPS, Faull JL, Newton R, Deadman M, Butt TM (2000) Production of efrapeptins by Tolypocladium species and evaluation of their insecticidal and antimicrobial properties. Mycol Res 104:537–544CrossRefGoogle Scholar
  10. Bandani AR, Amiri B, Butt TM, Gordon-Weeks R (2001) Effects of efrapeptin and destruxin, metabolites of entomogenous fungi, on the hydrolytic activity of a vacuolar type ATPase identified on the brush border membrane vesicles of Galleria mellonella midgut and on plant membrane bound hydrolytic enzymes. Biochim Biophys Acta 1510:367–377CrossRefGoogle Scholar
  11. Belofsky G N, Gloer JB, Wicklow DT, Dowd PF (1998) Shearamide A: a new cyclic peptide from the ascostromata of Eupenicillium shearii. Tetrahed Lett 39:5497–5500CrossRefGoogle Scholar
  12. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26CrossRefGoogle Scholar
  13. Boros C, Smith CJ, Vasina Y, Che Y, Dix AB, Darveaux B, Pearce C (2006) Isolation and identification of the icosalides – cyclic peptolides with selective antibiotic and cytotoxic activities. J Antibiot 59:486–494CrossRefGoogle Scholar
  14. Boudart G (1989) Antibacterial activity of sirodesmin PL phytotoxin: application to the selection of phytoxin-deficient mutants. Appl Enivron Microbiol 55:1555–1559Google Scholar
  15. Büchel, E, Martini U, Mayer A, Anke H, Sterner O (1998) Omphalotins B, C, and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuaration of omphalotin A. Tetrahedron 54:5345–5352CrossRefGoogle Scholar
  16. Buckingham J (ed) (2008) Dictionary of natural products on DVD, ver 17.1. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  17. Calo L, Fornelli F, Nenna S, Tursi A, Caiaffa MF, Macchia L (2003) Beauvericin cytotoxicity to the invertebrate cell line SF-9. J Appl Genet 44:515–520Google Scholar
  18. Capon RJ, Skene C, Stewart M, Ford J, O’Hair RAJ, Williams L, Lacey E, Gill JH, Heiland K, Friedel T (2003) Aspergillicins A-E: five novel depsipeptides from the marine-derived fungus Aspergillus carneus. Org Biomol Chem 1:1856–1862CrossRefGoogle Scholar
  19. Che Y, Swenson DC, Gloer JB, Koster B, Malloch D (2001) Pseudodestruxins A and B: new cycllic depsipeptides from the coprophilous fungus Nigrosabulum globosum. J Nat Prod 64:555–558CrossRefGoogle Scholar
  20. Chen G, Lin Y, Wen L, Vrijmoed LLP, Jones EBG (2003) Two new metabolites of a marine endophytic fungus (No. 1893) from an estuarine mangrove on the South China Sea coast. Tetrahedron 59:4907–4909CrossRefGoogle Scholar
  21. Chen SY, Dickson DW, Mitchell DJ (2000) Viability of Heterodera glycines exposed to fungal filtrates. J Nematol 32:190–197Google Scholar
  22. Conder GA, Johnson SS, Nowakowski DS, Blake TE, Dutton FE, Nelson SJ, Thomas EM, Davis JP, Thompson DP (1995) Anthelmintic profile of the cyclodepsipeptide PF1022A in in vitro and in vivo models. J Antibiot 48:820–823CrossRefGoogle Scholar
  23. Dyker H, Harder A, Scherkenbeck J (2004) Chimeric cyclodepsipeptides as mimetics for the anthelmintic PF1022A. Biorg Med Chem Lett 14: 6129–6130CrossRefGoogle Scholar
  24. Elbert A, Nauen R, McCaffery A (2007) IRAC, resistance and mode of action classification of insecticides. In: Krämer W, Schirmer U (eds) Modern crop protection compounds. Wiley-VCH, Weinheim, pp 753–771CrossRefGoogle Scholar
  25. Elliott CE, Gardiner DM, Thoma G, Cozijnsen A, van de Wouw A, Howlett BJ (2007) Production of the toxin sirodesmin PL by Leptosphaeria maculans during infection of Brassica napus. Mol Plant Pathol 8:791–802CrossRefGoogle Scholar
  26. Feifel SC, Schmiederer T, Hornbogen T, Berg H, Süssmuth RD, Zocher R (2007) In vitro synthesis of new enniatins: Probing the α-D-hydroxy carboxylic acid binding pocket of the multienzyme enniatin synthetase. ChemBioChem 8:1767–1770CrossRefGoogle Scholar
  27. Fornelli F, Minervini F, Logrieco A (2004) Cytotoxicity of fungal metabolites to lepidopteran (Spodoptera frugiperda) cell line (SF9). J Invert Pathol 85:74–79CrossRefGoogle Scholar
  28. Fredenhagen A, Molleyres LP, Böhlendorf B, Laue G (2006) Structure determination of neofrapeptins A to N: peptides with insecticidal activity produced by the fungus Geotrichum candidum. J Antibiot 59:267–280CrossRefGoogle Scholar
  29. Glinski M, Hornbogen T, Zocher R (2001) Enzymatic synthesis of fungal N-methylated cyclopeptides and depsipeptides. In: Kirst H, Yeh WK, Zmijewski M (eds) Enzyme technologies for pharmaceutical and biotechnological applications. Dekker, New York, pp 471–497Google Scholar
  30. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  31. Hayashi H, Matsumoto H, Akiyama K (2004) New insecticidal compounds, communesins C, D, and E, from Penicillium expansum Link MK-57. Biosci Biotechnol Biochem 68:753–756CrossRefGoogle Scholar
  32. He J, Lion U, Sattler I, Gollmic FA, Grabley S, Cai J, Meiners M, Schünke H, Schaumann K, Dechert U, Kron M (2005) Diastereomeric quinolinone alkaloids from the marine-derived fungus Penicllium janczewskii. J Nat Prod 68:1397–1399CrossRefGoogle Scholar
  33. Houston DR, Shiomi K, Arai N, Omura S, Peter MG, Turberg A, Synstad B, Eijsink VG, van Aalten DMF (2002) High-resolution structures of a chitinase complex with natural product cyclopentapeptide inhibitors: mimicry of carbohydrate substrate. Proc Natl Acad Sci USA 99:9127–9132CrossRefGoogle Scholar
  34. Huang H, She Z, Lin Y, Vrijmoed LLP, Lin W (2007) Cyclic peptides from an endophytic fungus obtained from a Mangrove leaf (Kandelia candel). J Nat Prod 70:1696–1699CrossRefGoogle Scholar
  35. Isaka M, Kittakoop P, Kirtikara K, Hywel-Jones NI, Thebtaranonth Y (2005a) Bioactive substances from insect pathogenic fungi. Acc Chem Res 38:813–823CrossRefGoogle Scholar
  36. Isaka M, Palasarn S, Rachtawee P, Vimuttipong S, Kongsaeree P (2005b) Unique diketopiperazine dimers from the insect pathogenic fungus Verticillium hemipterigenum BCC 1449. Org Lett 7:2257–2260CrossRefGoogle Scholar
  37. Isaka M, Palasarn S, Kocharin K, Hywel-Jones NI (2007) Comparison of the bioactive secondary metabolites from the scale insect pathogens, anamorph Paecilomyces cinnamomeus, and teleomorph Torrubiella luteorostrata. J Antibiot 60:577–581CrossRefGoogle Scholar
  38. Ishiyama A, Otoguro K, Iwatsuki M, Namatame M, Nishihara A, Nonaka K, Kinoshita Y, Takahashi Y, Masuma R, shiomi K, Yamada H, Omura S (2009) In vitro and in vivo antitrypanasomal activities of three peptide antibiotics: leucinostatin A and B, alamethicin I and tsushimycin. J Antibiot 62:303–308CrossRefGoogle Scholar
  39. Jegorov A, Paizs B, Žabka M, Kuzma M, Havlièek V, Giannakopulos AE, Derrick PJ (2003) Profiling of cyclic hexadepsipeptides roseotoxins synthesised in vitro: a combined tandem mass spectrometry and quantum chemical study. Eur J Mass Spectrom 9:105–116CrossRefGoogle Scholar
  40. Jegorov A, Paizs B, Kuzma M, Zabka M, Landa Z, Sulc M, Barrow MP, Havlicek V (2004) Extraribosomal cyclic tetradepsipeptides beauverolides: profiling and modeling the fragmentation pathways. J Mass Spectrom 39:949–969CrossRefGoogle Scholar
  41. Kershaw M, Moorhouse ER, Bateman R; Reynolds SE, Charnley AK (1999) The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J Invert Pathol 74:213–223CrossRefGoogle Scholar
  42. Khachatourians GG, Qazi SS (2008) Entomopathogenic fungi: biochemistry and molecular biology. In: Brakhage AA, Zipfel PF (eds) Human and animal relationship, 2nd edn. Mycota VI. Springer, Berlin Heidelberg New York, pp 33–61CrossRefGoogle Scholar
  43. Köpcke B, Johansson M, Sterner O, Anke H (2002a) Biologically active secondary metabolites from the ascomycete A111-95. 1. Production, isolation and biological activities. J Antibiot 55:36–40CrossRefGoogle Scholar
  44. Köpcke B, Weber RWS, Anke H (2002b) Galiellalactone and its biogenetic precursors as chemotaxonomic markers of the Sacrosomataceae (Ascomyceta). Phytochemistry 60:709–714CrossRefGoogle Scholar
  45. Krasnoff SB, Reategui RF, Wagenaar MM, Gloer JB, Gibson DM (2005) Cicadapeptins I and II: new Aib-containing peptides from the entomopathogenic fungus Cordyceps heteropoda. J Nat Prod 68:50–55CrossRefGoogle Scholar
  46. Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME, Donzelli BGG, Vhurchill ACL, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. J Nat Prod 70:1919–1924CrossRefGoogle Scholar
  47. Kumazawa S, Kanda M, Utagawa M, Chiba N, Ohtani H, Mikawa T (2003) MK7924, a novel metabolite with nematocidal activity from Coronophora gregaria. J Antibiot 56:652–654CrossRefGoogle Scholar
  48. Kusano M, Koshino H, Uzawa J, Fujioka S, Kawano T, Kimura Y (2000) Nematocidal alkaloids and related compounds produced by the fungus Penicllium cf. simplicissium. Biosci Biotechnol Biochem 64:2559–2568CrossRefGoogle Scholar
  49. Kuzma M, Jegorov A, Kacer P, Havlicek V (2001) Sequencing of new beauverolides by high-performance liquid chromatography and mass spectrometry. J Mass Spectrometry 36:1108–1115CrossRefGoogle Scholar
  50. Laser H, von Boberfeld WO, Wöhler K, Wolf D (2003) Effects of the botanical composition and weather conditions on mycotoxins in winter forage from grassland. Mycotoxicol Res 19:87–90CrossRefGoogle Scholar
  51. Leistner E, Steiner U (2009) Fungal origin of ergoline alkaloids present in dicotyledonous plants (Convolvulaceae) In: Anke T and Weber D (eds) Physiology and genetics. Mycota XV. Springer, Berlin Heidelberg New York, pp 197–208CrossRefGoogle Scholar
  52. Liermann JC, Kolshorn H, Antelo L, Hof C, Anke H, Opatz T (2009) Omphalotins E-I, five oxidatively modified nematicidal cyclopeptides from Omphalotus olearius. Eur J Org Chem 2009:1256–1262CrossRefGoogle Scholar
  53. Lira SP, Vita-Marques AM, Seleghim MHR, Bugni TS, LaBarbera DV, Sette LD, Sponchiado SRP, Ireland CM, Berlinck RGS (2006) New destruxins from the marine-derived fungus Beauveria felina. J Antibiot 59:553–563CrossRefGoogle Scholar
  54. López-Gresa MP, González MC, Ciavatta L, Ayala I, Moya P, Primo J; (2006) Insecticidal activity of paraherquamides, including paraherquamide H and paraherquamide I, two new alkaloids isolated from Penicillium cluniae. J Agric Food Chem 54:2921–2925CrossRefGoogle Scholar
  55. Matsuda D, Namatame I, Tomoda H, Kobayashi S, Zocher R, Kleinkauf H, Omura S (2004) New beauverolides produced by amino acid-supplemented fermentation of Beauveria sp. FO-6979. J Antibiot 57:1–9CrossRefGoogle Scholar
  56. Mayer A, Kilian M, Hoster B, Sterner O, Anke H (1999) In vitro and in vivo nematicidal activities of the cyclic dodecapeptide omphalotin A. Pest Sci 55:27–30CrossRefGoogle Scholar
  57. Meyer SLF, Huettel RN, Zhong X, Humber RA, Juba J, Nitao JK (2004) Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility. Nematology 6:23–32CrossRefGoogle Scholar
  58. Miyado S, Kawasaki H, Aoyagi K, Yaguchi T, Okada T, Sugiyama J (2000) Taxonomic position of the fungus producing the anthelmintic PF1022 based on the 18S rRNA gene base sequence. Nippon Kingakukai Kaiho 41:183–188Google Scholar
  59. Mohanty SS, Prakash S (2008) Effects of culture media on larvicidal property of secondary metabolites of mosquito pathogenic fungus Chrysosporium lobatum (Moniliales: Moniliaceae) Acta Trop 109:50–54CrossRefGoogle Scholar
  60. Monma S, Sunazuka T, Nagai K, Arai T, Shiomi K, Matsui R, Mura S (2006) Verticilide: elucidation of absolute configuration and total synthesis. Org Lett 8:5601–5604CrossRefGoogle Scholar
  61. Muroi MN, Kaneko N, Suzuki K, Nishio T, Oku T, Sato T, Takatsuki A (1996) Efrapeptins block exocytic but not endocytic trafficking of proteins. Biochim Biophys Res Commun 227:800–809CrossRefGoogle Scholar
  62. Nagamitsu T, Takano D, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Harigaya Y, Kuwajima I, Omura S (2003) Total synthesis of nafuredin-γ, a γ-lactone related to nafuredin with selective activity against NADH-fumarate reductase. Tetrahedron Lett 44:6441–6444CrossRefGoogle Scholar
  63. Nagaraj G, Uma MV, Shivayogi MS, Balaram H (2001) Antimalarial activities of peptide antibiotics isolated from fungi. Antimicrob Agents Chemother 45:145–149CrossRefGoogle Scholar
  64. Nakahara S, Kusano M, Fujioka S, Shimada A, Kimura Y (2004) Penipratynolene, a novel nematicide from Penicillium bilaiae Chalabuda. Biosci Biotechnol Biochem 68:257–259CrossRefGoogle Scholar
  65. Namatame I, Zomoda H, Ishibashi S, Omura S (2004) Antiatherogenic activity of fungal beauverolides, inhibitors of lipid droplet accumulation in macrophages. Proc Natl Acad Sci USA 101:737–742CrossRefGoogle Scholar
  66. Nilanonta C, Isaka M, Chanphen R, Thongorn N, Tanticharoen M, Thebtaranonth Y (2003) Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: isolation and studies on precursor-directed biosynthesis. Tetrahedron 59:1015–1020CrossRefGoogle Scholar
  67. Ohshiro T, Rudel LL, Omura S, Tomoda H (2007) Selectivity of microbial acyl-CoA:cholesterol acyltransferase inhibitors towards isoenzymes. J Antibiot 60:43–51CrossRefGoogle Scholar
  68. Omura S, Miyadera H, Ui H, Shiomi K, Yamaguchi Y, Masuma R, Nagamitsu T, Takano D, Sunazuka T, Harder A, Kölbl H, Namikoshi M, Miyoshi H, Sakamoto K, Kita K (2001) An anthelmintic compound, nafuredin, shows selelctive inhibition of complex I in helminth mitochondria. Proc Natl Acad Sci USA 98:60–62CrossRefGoogle Scholar
  69. Ondeyka JG, Dahl-Roshak AM, Tkacz JS, Zink DL, Zakson-Aiken M, shoop WL, Goetz MA, Singh SB (2002) Nodulisporic acid B, B1, and B2: A series of 1′-deoxy-nodulisporic acids from Nodulisporium sp. Bioorg Med Chem Lett 12:2941–2944CrossRefGoogle Scholar
  70. Ondeyka JG, Byrne K, Vesey D, Zink DL, Shoop WL, Goetz MA, Singh SB (2003) Nodulisporic acids C, C1, and C2: a series of D-ring-opened nodulisporic acids from the fungus Nodulisporium sp. J Nat Prod 66:121–124CrossRefGoogle Scholar
  71. Panaccione DC, Cipoletti JR, Sedlock AB, Blemings KP, Schradl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agric Food Chem 54:4582–4587CrossRefGoogle Scholar
  72. Park JO, Hargreaves JR, McConville EJ, Stirling GR, Ghisalberti EL, Sivasithamparam (2004) Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Lett Appl Microbiol 38:271–276CrossRefGoogle Scholar
  73. Pedras MSC, Zaharia LI, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 59:579–596CrossRefGoogle Scholar
  74. Rouxel T, Chupeau Y, Fritz R, Kollmann A, Bousquet J-F (1988) Biological effects of sirodesmin PL, a phytotoxin produced by Leptosphaeria maculans. Plant Sci 57:45–53CrossRefGoogle Scholar
  75. Saeger B, Schmitt-Wrede HP, Dehnhardt M, Benten WP, Krucken J, Harder A, Samson-Himmelstjerna G von, Wiegand H, Wunderlich F (2001) Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A. FASEB J 15:1332–1334Google Scholar
  76. Samson-Himmelstjerna G von, Harder A, Sangster NC, Coles GC (2005) Efficacy of two cyclooctadepsipeptides, PF022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle. Parasitology 130:343–347CrossRefGoogle Scholar
  77. Sarabia F, Chammaa S, Sánchez Ruiz A, Martín Ortiz L, López Herrera FJ (2004) Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr Med Chem 11:1309–1332CrossRefGoogle Scholar
  78. Sasaki T, Takagi M, Yaguchi T, Miyado S, Okada T, Koyama M (1992) A new anthelmintic cyclodepsipeptide, PF1022. J Antibiot 45:692–697CrossRefGoogle Scholar
  79. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340CrossRefGoogle Scholar
  80. Scherkenbeck J, Jeschke P, Harder A (2002) PF1022A and related cyclodepsipeptides – a novel class of anthelmintics. Curr Top Med Chem 7:759–777CrossRefGoogle Scholar
  81. Schwarz M, Köpcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid a nematicidal principle of endophytic fungi. Phytochemistry 65:2239–2245CrossRefGoogle Scholar
  82. Seto Y, Takahasi K, Matsuura H, Kogami Y, Yada H, Yoshihara T, Nabeta K (2007) Novel cyclic peptide, epichlicin, from the endophytic fungus, Epichloe typhina. Biosci Biotechnol Biochem 71:1470–1475CrossRefGoogle Scholar
  83. Shiomi K, Ui H, Suzuki H, Hatano H, Nagamitsu T, Takano D, Miyadera H, Yamashita T, Kita K, Miyoshi H, Harder A, Tomoda H, Ōmura S (2005) A γ-lactone from nafuredin, nafuredin- γ, also inhibits helminth complex I. J Antibiot 58:50–55CrossRefGoogle Scholar
  84. Shoop WL, Gregory LM, Zaksonaiken M, Michael BF, Haines HW, Ondeyka JG, Meinke RT, Schmatz DM (2001) Systemic efficacy of nodulisporic acid against fleas on dogs. J Parasitol 87:419–423Google Scholar
  85. Singh SB, Zink DL, Liesch JM, Mosley RT, Dombrowski AW, Bills GF, Darkin-Rattray SJ, Schmatz DM, Goetz MA (2002) Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal α-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J Org Chem 67:815–825CrossRefGoogle Scholar
  86. Singh SB, Ondeyka JG, Jayasuriya H, Zink DL, Ha SN, Dahl-Roshak A, Greene J, Kim JA, Smith MM, Shoop W, Tkacz JS (2004) Nodulisporic acids D-F: structure, biological activities, and biogenetic relationships. J Nat Prod 67:1496–1506CrossRefGoogle Scholar
  87. Skrobek A, Butt TM (2005) Toxicity testing of destruxins and crude extracts from the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:23–28CrossRefGoogle Scholar
  88. Smith AB, Cui H (2003) Indole-diterpene synthetic studies:total synthesis of (-)-21-isopentenylpaxilline. Helv Chim Acta 86:3908–3938CrossRefGoogle Scholar
  89. Supothina S, Isaka M, Kirtikara K, Tanticharoen M, Thebtaranonth Y. (2004) Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J Antibiot 57:732–738CrossRefGoogle Scholar
  90. Tang CY, Chen YW, Jow GM, Chou CJ, Jeng CJ (2005) Beauvericin activates Ca2+−activated Cl currents and induces cell deaths in Xenopus oocytes via influx of extracellular Ca2+. Chem Res Toxicol 18:825–833CrossRefGoogle Scholar
  91. Trost BM, Cramer N, Bernsmann H (2007) Concise total synthesis of (±)-marcfortine B. J Am Chem Soc 129:3086–3087CrossRefGoogle Scholar
  92. Uchida R, Imasato R, Yamaguchi Y, Masuma R, Shiomi K, Tomoda H, Omura S (2006a) Yaequinolones, new insecticidal antibiotics produced by Penicillium sp. FKI-2140. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 59:646–651CrossRefGoogle Scholar
  93. Uchida R, Imasato R, Tomoda H, Omura S (2006b) Yaequinolones, new insecticidal antibiotics produced by Penicillium sp. FKI-2140. II. Structural elucidations. J Antibiot 59:652–658CrossRefGoogle Scholar
  94. Vey A, Matha V, Dumas C (2002) Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. J Invert Pathol 80:177–187CrossRefGoogle Scholar
  95. Whyte AC, Gloer JB, Wicklow DT, Dowd PF (1996) Sclerotiamide: a new member of the paraherquamide class with potent antiinsectan activity from the sclerotia of Aspergillus sclerotiorum. J Nat Prod 59:1093–1095CrossRefGoogle Scholar
  96. Williams RM (2002) Total synthesis and biosynthesis of the paraherquamides: an intriguing story of the biological Diels–Alder construction. Chem Pharm Bull 50:711–740CrossRefGoogle Scholar
  97. Williams RM, Cao J, Tsujishima H, Cox RJ (2003) Asymmetric, stereocontrolled total synthesis of paraherquamide A. J Am Chem Soc 125:12172–12178CrossRefGoogle Scholar
  98. Yasiu H, Hirai K, Yamamoto S, Takao K, Tadano K (2006) Total syntheses of (+)-1893B and its three diastereomers and evaluation of their biological activities. J Antibiot 59:456–463CrossRefGoogle Scholar
  99. Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596CrossRefGoogle Scholar
  100. Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute for Biotechnology and Drug Research, IBWF e.V.KaiserslauternGermany

Personalised recommendations