New Trends in Fungal Biooxidation

  • Martin HofrichterEmail author
  • René Ullrich
Part of the The Mycota book series (MYCOTA, volume 10)


Biooxidations using isolated biocatalysts for the oxidative conversion of organic compounds and materials are becoming more and more important in the industrial sector. Research in this direction is part of the rapidly developing field of White Biotechnology and is carried out not least against the background of sustainable development and the need to replace environmentally risky technologies by eco-friendly processes. Whereas whole cells are already widely used as oxidative biocatalysts, the application of isolated enzymes is still limited to a few examples. One reason for that is the cost-intensive production and laborious purification of enzymes which are mostly intracellular and sometimes membrane-bound proteins with low stability and complex co-factor requirements. The use of secreted oxidoreductases offers several advantages: they are easier to separate and purify, need only cheap co-substrates such as dioxygen or peroxides and are far more stable than intracellular enzymes. Filamentous fungi secrete a broad spectrum of oxidative biocatalysts which are involved, amongst others, in the degradation of recalcitrant biopolymers, the synthesis of melanins as well as the detoxification of plant ingredients, microbial metabolites and organopollutants. We focus here on novel secreted enzymes - peroxygenases and DyP-type peroxidases - with remarkable catalytic properties. Furthermore selected features of “classic” fungal oxidoreductases, such as laccase, tyrosinase and chloroperoxidase, are discussed against the background of innovative recent developments in the field of enzyme application.


Biofuel Cell Heme Peroxidase Pycnoporus Cinnabarinus Myceliophthora Thermophila Agrocybe Aegerita 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank M. Pecyna, M. Kinne, M. Inge Kluge, S. Peter, C. Liers, K. Barková, M. Poraj-Kobielska and G. Gröbe for still unpublished results on aromatic peroxygenases. The work in our laboratories was supported by the European Union (integrated project Biorenew), the Deutsche Bundestiftung Umwelt (DBU; projects Pilzliche Peroxygenasen and Pilzliche Sekretome), the Bundesministerium für Forschung (BMBF) and the Deutsche Forschungsgemeinschaft (DFG; projects FUPERS and FUNWOOD).


  1. Alvarado B, Torres E (2009) Recents patents in the use of peroxidases. Recent Pat Biotechnol 3:88–102CrossRefGoogle Scholar
  2. Amir L, Tam TK, Pita M, Meijler MM, Alfonta L, Katz E (2009) Biofuel cell controlled by enzyme logic systems. J Am Chem Soc 131:826–832CrossRefGoogle Scholar
  3. Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73:5477–5485CrossRefGoogle Scholar
  4. Anyanwutaku IO, Petroski RJ, Rosazza JP (1994) Oxidative coupling of mithramycin and hydroquinone catalyzed by copper oxidases and benzoquinone. Implications for the mechanism of action of aureolic acid antibiotics. Bioorg Med Chem 2:543–551CrossRefGoogle Scholar
  5. Aranda E, Kinne M, Kluge M, Ullrich R, Hofrichter M (2010) Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82:1057–1066CrossRefGoogle Scholar
  6. Aranda E, Ullrich R, Hofrichter M (2009b) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281Google Scholar
  7. Aron J, Baldwin DA, Marques HM, Pratt JM, Adams PA (1986) Hemes and hemoproteins. 1: Preparation and analysis of the heme-containing octapeptide (microperoxidase-8) and identification of the monomeric form in aqueous solution. J Inorg Biochem 27:227–243CrossRefGoogle Scholar
  8. Ashby MT (2008) Inorganic chemistry of defensive peroxidases in the human oral cavity. J Dent Res 87:900–914CrossRefGoogle Scholar
  9. Ayala M, Robledo NR, Lopez-Munguia A, Vazquez-Duhalt R (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ Sci Technol 34:2804–2809CrossRefGoogle Scholar
  10. Azevedo AM, Martins VC, Prazeres DM, Vojinovic V, Cabral JM, Fonseca LP (2003) Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev 9:199–247CrossRefGoogle Scholar
  11. Baciocchi E, Bietti M, Gerini MF, Lanzalunga O (2002) The mediation of veratryl alcohol in oxidations promoted by lignin peroxidase: the lifetime of veratryl alcohol radical cation. Biochem Biophys Res Commun 293:832–835CrossRefGoogle Scholar
  12. Bajpai P, Anand A, Bajpai PK (2006) Bleaching with lignin-oxidizing enzymes. Biotechnol Annu Rev 12:349–378CrossRefGoogle Scholar
  13. Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242CrossRefGoogle Scholar
  14. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145CrossRefGoogle Scholar
  15. Blasiak LC, Drennan CL (2009) Structural perspective on enzymatic halogenation. Acc Chem Res 42:147–155CrossRefGoogle Scholar
  16. Bollag J-M (1983) Cross-coupling of humus constituents and xenobiotic substances. In: Christman RF, Gjessing ET (eds) Aquatic and terrestrial humic materials. Science Publishing, Michigan, pp 127–141Google Scholar
  17. Borole AP, Davison BH (2008) Improving activity of salt-lyophilized enzymes in organic media. Appl Biochem Biotechnol 146:215–222CrossRefGoogle Scholar
  18. Bourquelot E, Bertrand G (1895) Le bleuissement et le noircissment des champignons. C R Soc Biol 47:582–584Google Scholar
  19. Bruyneel F, Enaud E, Billottet L, Vanhulle S, Marchand-Brynaert J (2008) Regioselective synthesis of 3-hydroxyorthanilic acid and iIts biotransformation into a novel Phenoxazinone dye by use of laccase. Eur J Org Chem 1:72–79CrossRefGoogle Scholar
  20. Bruyneel F, Payen O, Rescigno A, Tinant B, Marchand-Brynaert J (2009) Laccase-mediated synthesis of novel substituted phenoxazine chromophores featuring tuneable water solubility. Chemistry 15:8283–8295CrossRefGoogle Scholar
  21. Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21:543–549CrossRefGoogle Scholar
  22. Cabanes J, Chazarra S, Garcia-Carmona F (2002) Tyrosinase kinetics: a semi-quantitative model of the mechanism of oxidation of monohydric and dihydric phenolic substrates – reply. J Theor Biol 214:321–328CrossRefGoogle Scholar
  23. Carmichael R, Fedorak PM, Pickard MA (1985) Oxidation of phenols by chloroperoxidase. Biotechnol Lett 7:289–294CrossRefGoogle Scholar
  24. Cavill GWK, Ralph BJ, Tetaz JR, Werner RL (1953) The chemistry of mould metabolites. Part I. Isolation and characterisation of a red pigment from Coriolus sanguineus (Fr.). J Chem Soc:525–529Google Scholar
  25. Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17:441–456CrossRefGoogle Scholar
  26. Chefson A, Auclair K (2006) Progress towards the easier use of P450 enzymes. Mol Biosyst 2:462–469CrossRefGoogle Scholar
  27. Chen T, Embree HD, Wu LQ, Payne GF (2002) In vitro protein-polysaccharide conjugation: tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers 64:292–302CrossRefGoogle Scholar
  28. Chen X, van Pee KH (2008) Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes. Acta Biochim Biophys Sin 40:183–193CrossRefGoogle Scholar
  29. Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH (1999) Directed evolution of a fungal peroxidase. Nat Biotechnol 17:379–384CrossRefGoogle Scholar
  30. Christen S, Peterhans E, Stocker R (1990) Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci USA 87:2506–2510CrossRefGoogle Scholar
  31. Cirino PC, Arnold FH (2003) A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Int Ed Engl 42:3299–3301CrossRefGoogle Scholar
  32. Coman V, Vaz-Dominguez C, Ludwig R, Harreither W, Haltrich D, De Lacey AL, Ruzgas T, Gorton L, Shleev S (2008) A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell. Phys Chem Chem Phys 10:6093–6096CrossRefGoogle Scholar
  33. Conesa A, Punt PJ, van den Hondel CA (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158CrossRefGoogle Scholar
  34. Corbett MD, Chipko BR (1979) Chloroperoxidase-catalyzed oxidation of N-methyl-4-chloroaniline. Experientia 35:1150–1151CrossRefGoogle Scholar
  35. Couto SR, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569CrossRefGoogle Scholar
  36. Davis F, Higson SP (2007) Biofuel cells – recent advances and applications. Biosens Bioelectron 22:1224–1235CrossRefGoogle Scholar
  37. de Hoog HM, Nallani M, Cornelissen JJ, Rowan AE, Nolte RJ, Arends IW (2009) Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors. Org Biomol Chem 7:4604–4610CrossRefGoogle Scholar
  38. Dias DA, Urban S (2009) HPLC and NMR studies of phenoxazone alkaloids from Pycnoporus cinnabarinus. Nat Prod Commun 4:489–498Google Scholar
  39. Dorovska-Taran V, Posthumus MA, Boeren S, Boersma MG, Teunis CJ, Rietjens IM, Veeger C (1998) Oxygen exchange with water in heme-oxo intermediates during H2O2-driven oxygen incorporation in aromatic hydrocarbons catalyzed by microperoxidase-8. Eur J Biochem 253:659–668CrossRefGoogle Scholar
  40. Dunford HB (1999) Heme peroxidases, 1st edn. Wiley-VCH, New York, 528 ppGoogle Scholar
  41. Eggert C, Temp U, Dean JF, Eriksson KE (1995) Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett 376:202–206CrossRefGoogle Scholar
  42. Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A (2009) Vesicle-associated melanization in Cryptococcus neoformans. Microbiology 155:3860–3867. doi: 10.1099/mic.0.032854–0CrossRefGoogle Scholar
  43. Espin JC, Soler-Rivas C, Cantos E, Tomas-Barberan FA, Wichers HJ (2001) Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J Agric Food Chem 49:1187–1193CrossRefGoogle Scholar
  44. Espin JC, Abraham F, Garcia-Viguera C, Ferreres F, Soler-Rivas C, Wichers HJ (2003) Enzymatic synthesis of antioxidant hydroxytyrosol. United States Patent 0180833 A1Google Scholar
  45. Faergemand M, Otte J, Qvist KB (1998) Cross-linking of whey proteins by enzymatic oxidation. J Agric Food Chem 46:1326–1333CrossRefGoogle Scholar
  46. Faraco V, Piscitelli A, Sannia G, Giardina P (2007) Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microbiol Biotechnol 23:889–893CrossRefGoogle Scholar
  47. Fleischmann P, Zorn H (2008) Enzymic pathways for formation of carotenoid cleavage products. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: natural functions, vol 4. Birkhäuser, Basel, pp 341–366.CrossRefGoogle Scholar
  48. Gasowska-Bajger B, Wojtasek H (2008) Indirect oxidation of the antitumor agent procarbazine by tyrosinase – possible application in designing anti-melanoma prodrugs. Bioorg Med Chem Lett 18:3296–3300CrossRefGoogle Scholar
  49. Geigert J, Lee TD, Dalietos DJ, Hirano DS, Neidleman SL (1986) Epoxidation of alkenes by chloroperoxidase catalysis. Biochem Biophys Res Commun 136:778–782CrossRefGoogle Scholar
  50. Gómez BL, Nosanchuk JD (2003) Melanin and fungi. Curr Opin Infect Dis 16:91–96CrossRefGoogle Scholar
  51. Grey CE, Rundbäck F, Adlercreutz P (2008) Improved operational stability of chloroperoxidase through use of antioxidants. J Biotechnol 135:196–201CrossRefGoogle Scholar
  52. Groves JT (2005) Models and mechanisms of cytochrome P450 enzymes. In: Ortiz De Montellano PR (ed) Cytochrome P450 – structure, mechanism and biochemistry. Kluwer/Plenum, New York, pp 1–43CrossRefGoogle Scholar
  53. Hager LP, Morris DR, Brown FS, Eberwein H (1966) Chloroperoxidase. II. Utilization of halogen anions. J Biol Chem 241:1769–1777Google Scholar
  54. Hahn V, Mikolasch A, Manda K, Gordes D, Thurow K, Schauer F (2009) Laccase-catalyzed carbon-nitrogen bond formation: coupling and derivatization of unprotected L-phenylalanine with different para-hydroquinones. Amino Acids 37:315–321CrossRefGoogle Scholar
  55. Halaouli S, Asther M, Kruus K, Guo L, Hamdi M, Sigoillot JC, Asther M, Lomascolo A (2005) Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J Appl Microbiol 98:332–343CrossRefGoogle Scholar
  56. Halaouli S, Asther M, Sigoillot J-C, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100:219–232CrossRefGoogle Scholar
  57. Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355CrossRefGoogle Scholar
  58. Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blee E (2006) Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 281:33140–33151CrossRefGoogle Scholar
  59. Hansen EH, Albertsen L, Schafer T, Johansen C, Frisvad JC, Molin S, Gram L (2003) Curvularia haloperoxidase: antimicrobial activity and potential application as a surface disinfectant. Appl Environ Microbiol 69:4611–4617CrossRefGoogle Scholar
  60. Haq I, Ali S, Qadeer MA (2002) Biosynthesis of L-DOPA by Aspergillus oryzae. Biores Technol 85:25–29CrossRefGoogle Scholar
  61. Harigaya S, Honda T, Rong L, Miyakoshi T, Chen CL (2007) Enzymatic dehydrogenative polymerization of urushiols in fresh exudates from the lacquer tree, Rhus vernicifera DC. J Agric Food Chem 55:2201–2208CrossRefGoogle Scholar
  62. Hasan Z, Renirie R, Kerkman R, Ruijssenaars HJ, Hartog AF, Wever R (2006) Laboratory-evolved vanadium chloroperoxidase exhibits 100-fold higher halogenating activity at alkaline pH: catalytic effects from first and second coordination sphere mutations. J Biol Chem 281:9738–9744CrossRefGoogle Scholar
  63. Henson JM, Butler MJ, Day AW (1999) The dark side of the mycelium: Melanins of phytopathogenic fungi. Annu Rev Phytopathol 37:447–471CrossRefGoogle Scholar
  64. Hilden K, Hakala TK, Lundell T (2009) Thermotolerant and thermostable laccases. Biotechnol Lett 31:1117–1128CrossRefGoogle Scholar
  65. Hill HAO, Wong LL, Barry DF (2008) Oxidation by hydrogen peroxide. United States Patent 0044882 A1Google Scholar
  66. Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288CrossRefGoogle Scholar
  67. Hofrichter M, Ullrich R, Pecyna M, Kinne M, Kluge M, Aranda E, Liers C, Poraj-Kobielska M, Gröbe G, Scheibner K, Bittner B, Piontek K, Schubert R, Hammel K (2009) Aromatic peroxygenases from mushrooms: extracellular heme-thiolate proteins of a new enzyme sub-subclass? In: Shoun H, Ohkawa H (eds), 16th International Conference on Cytochrome P450 (Nago, Okinawa, Japan), Medimond (International Proceedings), Bologna, (Italy), pp 83–88Google Scholar
  68. Horn A (2009) The use of a novel peroxidase from the basidiomycete Agrocybe aegerita as an example of enatioselective sulfoxidation (Der Einsatz einer neuartigen Peroxidase des Basidiomyceten Agrocybe aegerita am Beispiel der enatioselektiven Sulfoxidation). Dissertation, University of Rostock, RostockGoogle Scholar
  69. Horváth IT, Anastas PT (2007) Innovations and green chemistry. Chem Rev 107:2169–3173CrossRefGoogle Scholar
  70. Houborg K, Harris P, Petersen J, Rowland P, Poulsen JC, Schneider P, Vind J, Larsen S (2003a) Impact of the physical and chemical environment on the molecular structure of Coprinus cinereus peroxidase. Acta Crystallogr D Biol Crystallogr 59:989–996CrossRefGoogle Scholar
  71. Houborg K, Harris P, Poulsen JC, Schneider P, Svendsen A, Larsen S (2003b) The structure of a mutant enzyme of Coprinus cinereus peroxidase provides an understanding of its increased thermostability. Acta Crystallogr D Biol Crystallogr 59:997–1003CrossRefGoogle Scholar
  72. Hüttermann A, Haars A, Trojanowski J, Milstein O, Kharazipour A (1989) Enzymatic modification of lignin for its technical use – strategies and results. In: Glasser WG, Sarkanen S (eds) New polymeric materials from lignin. (ACS symposium series 397) American Chemical Society, Washington, pp 361–371CrossRefGoogle Scholar
  73. Hüttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55:387–394CrossRefGoogle Scholar
  74. Ikeda R, Tanaka H, Oyabu H, Uyama H, Kobayashi S (2001) Preparation of artificial urushi via an environmentally benign process. Bull Chem Soc Jpn 74:1067–1073CrossRefGoogle Scholar
  75. Jin L, Nicholas DD, Schultz TP (1991) Wood laminates glued by enzymatic oxidation of brown-rotted lignin. Holzforschung 45:467–468CrossRefGoogle Scholar
  76. Jolivet S, Arpin N, Wichers HJ, Pellon G (1998) Agaricus bisporus browning: a review. Mycol Res 102:1459–1483CrossRefGoogle Scholar
  77. Joo H, Lin Z, Arnold FH (1999) Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399:670–673CrossRefGoogle Scholar
  78. Jung D, Paradiso M, Wallacher D, Brandt A, Hartmann M (2009) Formation of cross-linked chloroperoxidase aggregates in the pores of mesocellular foams: characterization by SANS and catalytic properties. ChemSusChem 2:161–164CrossRefGoogle Scholar
  79. Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K (2007) Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys Chem Chem Phys 9:1793–1801CrossRefGoogle Scholar
  80. Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035Google Scholar
  81. Kim YJ, Uyama H (2005) Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 62:1707–1723CrossRefGoogle Scholar
  82. Kim SJ, Ishikawa K, Hirai M, Shoda M (1995) Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng 79:601–607CrossRefGoogle Scholar
  83. Kinne M, Ullrich R, Hammel KE, Hofrichter M (2008) Regioselective preparation of (R)-2-(4-Hydroxyphenoxy)propionic acid with a fungal peroxygenase. Tetrahedron Lett 49:5950–5953CrossRefGoogle Scholar
  84. Kinne M, Poraj-Kobielska M, Aranda E, Ullrich R, Hammel KE, Scheibner K, Hofrichter M (2009a) Regioselective preparation of 5-hydroxypropranolol and 4'-hydroxydiclofenac with a fungal peroxygenase. Bioorg Med Chem Lett 19:3085–3087CrossRefGoogle Scholar
  85. Kinne M, Poraj-Kobielska M, Ralph SA, Ullrich R, Hofrichter M, Hammel KE (2009b) Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J Biol Chem 284:2943–2949CrossRefGoogle Scholar
  86. Kjalke M, Andersen MB, Schneider P, Christensen B, Schulein M, Welinder KG (1992) Comparison of structure and activities of peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus. Biochim Biophys Acta 1120:248–256CrossRefGoogle Scholar
  87. Klibanov AM, Berman Z, Alberti BN (1981) Preparative hydroxylation of aromatic compounds catalyzed by peroxidase. J Am Chem Soc 103:6263–6264CrossRefGoogle Scholar
  88. Kluge M, Ullrich R, Scheibner K, Hofrichter M (2007) Spectrophotometric assay for detection of aromatic hydroxylation catalyzed by fungal haloperoxidase-peroxygenase. Appl Microbiol Biotechnol 75:1473–1478CrossRefGoogle Scholar
  89. Kluge M, Ullrich R, Dolge C, Scheibner K, Hofrichter M (2009) Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation. Appl Microbiol Biotechnol 81:1071–1076CrossRefGoogle Scholar
  90. Kobayashi S, Uyama H, Ikeda R (2001) Artificial urushi. Chemistry 7:4754–4760CrossRefGoogle Scholar
  91. Kudanga T, Prasetyo EN, Sipilä J, Nousiainen P, Widsten P, Kandelbauer A, Nyanhongo GS, Gübitz G (2008) Laccase-mediated wood surface functionalization. Eng Life Sci 8:297–302CrossRefGoogle Scholar
  92. Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24CrossRefGoogle Scholar
  93. Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M (2009) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85:1869–1879CrossRefGoogle Scholar
  94. Littlechild J (1999) Haloperoxidases and their role in biotransformation reactions. Curr Opin Chem Biol 3:28–34CrossRefGoogle Scholar
  95. Littlechild J, Garcia Rodriguez E, Isupov M (2009) Vanadium containing bromoperoxidase – insights into the enzymatic mechanism using X-ray crystallography. J Inorg Biochem 103:617–621CrossRefGoogle Scholar
  96. Liu JZ, Wang M (2007) Improvement of activity and stability of chloroperoxidase by chemical modification. BMC Biotechnol 7:23CrossRefGoogle Scholar
  97. Lundell T, Wever R, Floris R, Harvey P, Hatakka A, Brunow G, Schoemaker H (1993) Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol. Eur J Biochem 211:391–402CrossRefGoogle Scholar
  98. Makris TM, Denisov I, Schlichting I, Sligar SG (2005) Activation of molecular oxygen by cytochrome P450. In: Ortiz De Montellano PR (ed) Cytochrome P450 – structure, mechanism and biochemistry. Kluwer/Plenum, New York, pp 149–182.CrossRefGoogle Scholar
  99. Manda K, Hammer E, Mikolasch A, Gordes D, Thurow K, Schauer F (2006) Laccase-induced derivatization of unprotected amino acid L-tryptophan by coupling with p-hydroquinone 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide. Amino Acids 31:409–419CrossRefGoogle Scholar
  100. Manoj KM, Hager LP (2008) Chloroperoxidase, a janus enzyme. Biochemistry 47:2997–3003CrossRefGoogle Scholar
  101. Manoj KM, Lakner FJ, Hager LP (2000) Epoxidation of indene by chloroperoxidase. J Mol Catal B Enzym 9:107–111CrossRefGoogle Scholar
  102. Marques HM (2007) Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans 2007:4371–4385CrossRefGoogle Scholar
  103. Matsunaga I, Sumimoto T, Ayata M, Ogura H (2002) Functional modulation of a peroxygenase cytochrome P450: novel insight into the mechanisms of peroxygenase and peroxidase enzymes. FEBS Lett 528:90–94CrossRefGoogle Scholar
  104. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565CrossRefGoogle Scholar
  105. Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624CrossRefGoogle Scholar
  106. Mikolasch A, Niedermeyer TH, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Gesell M, Hessel S, Julich WD, Lindequist U (2006) Novel penicillins synthesized by biotransformation using laccase from Trametes spec. Chem Pharm Bull 54:632–638CrossRefGoogle Scholar
  107. Mikolasch A, Niedermeyer TH, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Gesell Salazar M, Hessel S, Julich WD, Lindequist U (2007) Novel cephalosporins synthesized by amination of 2,5-dihydroxybenzoic acid derivatives using fungal laccases II. Chem Pharm Bull 55:412–416CrossRefGoogle Scholar
  108. Mikolasch A, Wurster M, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Julich WD, Lindequist U (2008) Novel beta-lactam antibiotics synthesized by amination of catechols using fungal laccase. Chem Pharm Bull 56:902–907CrossRefGoogle Scholar
  109. Mita N, Tawaki S, Uyama H, Kobayashi S (2003) Laccase-catalyzed oxidative polymerization of phenols. Macromol Biosci 3:253–257CrossRefGoogle Scholar
  110. Moehlenbrock MJ, Minteer SD (2008) Extended lifetime biofuel cells. Chem Soc Rev 37:1188–1196CrossRefGoogle Scholar
  111. Morgan JA, Lu Z, Clark DS (2002) Toward the development of a biocatalytic system for oxidation of p-xylene to terephthalic acid: oxidation of 1,4-benzenedimethanol. J Mol Catal B Enzym 18:147–154CrossRefGoogle Scholar
  112. Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007) “Blue” laccases. Biochemistry (Mosc) 72:1136–1150CrossRefGoogle Scholar
  113. Nakamura K, Go N (2005) Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 62:2050–2066CrossRefGoogle Scholar
  114. Omura T (2005) Heme-thiolate proteins. Biochem Biophys Res Commun 338: 404–409CrossRefGoogle Scholar
  115. Ortiz de Montellano P (2005) Cytochrome P450 – structure, mechanism and biochemistry, 3rd edn. Kluwer/Plenum, New York, 690 ppCrossRefGoogle Scholar
  116. Ortiz de Montellano PR, de Voss JJ (2005) Substrate oxidation by cytochrome P450 enzymes. In: Ortiz De Montellano PR (ed) Cytochrome P450 – structure, mechanism and biochemistry. Kluwer/Plenum, New York, pp 183–245CrossRefGoogle Scholar
  117. Osiadacz J, Kaczmarek L, Opolski A, Wietrzyk J, Marcinkowska E, Biernacka K, Radzikowski C, Jon M, Peczynska-Czoch W (1999) Microbial conversion of methyl- and methoxy-substituted derivatives of 5H-indolo[2,3-b]quinoline as a method of developing novel cytotoxic agents. Anticancer Res 19:3333–3342Google Scholar
  118. Otey CR, Bandara G, Lalonde J, Takahashi K, Arnold FH (2006a) Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnol Bioeng 93:494–499CrossRefGoogle Scholar
  119. Otey CR, Landwehr M, Endelman JB, Hiraga K, Bloom JD, Arnold FH (2006b) Structure-guided recombination creates an artificial family of cytochromes P450. PLoS Biol 4:e112Google Scholar
  120. Palmore GTR, Kim H-H (1999) Electro-enzymic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J Electroanal Chem 464:110–117CrossRefGoogle Scholar
  121. Paloheimo M, Puranen T, Valtakari L, Kruus K, Kallio J, Mäntylä A, Fagerström R, Ojapalo P, Vehmaanperä J (2006) Novel laccase enzymes and their uses. Patent US 2006/0063246 A1Google Scholar
  122. Park JB, Clark DS (2006a) Deactivation mechanisms of chloroperoxidase during biotransformations. Biotechnol Bioeng 93:1190–1195CrossRefGoogle Scholar
  123. Park JB, Clark DS (2006b) New reaction system for hydrocarbon oxidation by chloroperoxidase. Biotechnol Bioeng 94:189–192CrossRefGoogle Scholar
  124. Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806CrossRefGoogle Scholar
  125. Parvez S, Kang M, Chung HS, Bae H (2007) Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother Res 21:805–816CrossRefGoogle Scholar
  126. Pas LM (2007) Alternative energy: enzyme-based biofuel cells. Basic Biotechnol eJournal 3:93–97Google Scholar
  127. Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiro M, Ioannidis V, Penel C, Falquet L, Dunand C (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611CrossRefGoogle Scholar
  128. Pecyna MJ, Schnorr KM, Ullrich R, Scheibner K, Kluge M, Hofrichter M (2008) Fungal peroxygenases and methods of application. Patent WO 2008/119780 A2Google Scholar
  129. Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84:885–897CrossRefGoogle Scholar
  130. Peshkova S, Li K (2003) Investigation of chitosan-phenolics systems as wood adhesives. J Biotechnol 102:199–207CrossRefGoogle Scholar
  131. Plonka PM, Grabacka M (2006) Melanin synthesis in microorganisms–biotechnological and medical aspects. Acta Biochim Pol 53:429–443Google Scholar
  132. Priestley GC (1993) Molecular aspects of dermatology. Wiley, Chichester, 226 ppGoogle Scholar
  133. Pühse M, Szweda RT, Ma Y, Jeworrek C, Winter R, Zorn H (2009) Marasmius scorodonius extracellular dimeric peroxidase – exploring its temperature and pressure stability. Biochim Biophys Acta 1794:1091–1098CrossRefGoogle Scholar
  134. Rabe KS, Gandubert VJ, Spengler M, Erkelenz M, Niemeyer CM (2008) Engineering and assaying of cytochrome P450 biocatalysts. Anal Bioanal Chem 392:1059–1073CrossRefGoogle Scholar
  135. Raghukumar C, D’Souza-Ticlo D, Verma AK (2008) Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi. Crit Rev Microbiol 34:189–206CrossRefGoogle Scholar
  136. Ruiz-Duenas FJ, Camarero S, Perez-Boada M, Martinez MJ, Martinez AT (2001) A new versatile peroxidase from Pleurotus. Biochem Soc Trans 29:116–122CrossRefGoogle Scholar
  137. Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 7:220–229CrossRefGoogle Scholar
  138. Sanfilippo C, Nicolosi G (2002) Catalytic behaviour of chloroperoxidase from Caldariomyces fumago in the oxidation of cyclic conjugated dienes. Tetrahedron: Asym 13:1889–1892CrossRefGoogle Scholar
  139. Sanfilippo C, D’Antona N, Nicolosi G (2004) Chloroperoxidase from Caldariomyces fumago is active in the presence of an ionic liquid as co-solvent. Biotechnol Lett 26:1815–1819CrossRefGoogle Scholar
  140. Sato M (1969) The conversion of phenolase of p-coumaric acid to caffeic acid with special reference to the role of ascorbic acid. Phytochemistry 8:353–362CrossRefGoogle Scholar
  141. Sato T, Hara S, Matsui T, Sazaki G, Saijo S, Ganbe T, Tanaka N, Sugano Y, Shoda M (2004) A unique dye-decolorizing peroxidase, DyP, from Thanatephorus cucumeris Dec 1: heterologous expression, crystallization and preliminary X-ray analysis. Acta Crystallogr D Biol Crystallogr 60:149–152CrossRefGoogle Scholar
  142. Sawai-Hatanaka H, Ashikari T, Tanaka Y, Asada Y, Nakayama T, Minakata H, Kunishima N, Fukuyama K, Yamada H, Shibano Y, et al (1995) Cloning, sequencing, and heterologous expression of a gene coding for Arthromyces ramosus peroxidase. Biosci Biotechnol Biochem 59:1221–1228CrossRefGoogle Scholar
  143. Scheibner M, Hulsdau B, Zelena K, Nimtz M, de Boer L, Berger RG, Zorn H (2008) Novel peroxidases of Marasmius scorodonius degrade beta-carotene. Appl Microbiol Biotechnol 77:1241–1250CrossRefGoogle Scholar
  144. Schmid RD, Urlacher V (2007) Modern biooxidation enzymes, reactions and applications, 1st edn. Wiley-VCH, Weinheim, 300 ppCrossRefGoogle Scholar
  145. Schoot-Uiterkamp AJM, Mason HS (1973) Magnetic dipole–dipole coupled Cu(II) pairs in nitric oxide-treated tyrosinase: a structural relationship between the active sites of tyrosinase and hemocyanin. Proc Natl Acad Sci USA 70:993–996CrossRefGoogle Scholar
  146. Sedlaczek L (1988) Biotransformations of steroids. Crit Rev Biotechnol 7:187–236CrossRefGoogle Scholar
  147. Seelbach K, van Deurzen MP, van Rantwijk F, Sheldon RA, Kragl U (1997) Improvement of the total turnover number and space-time yield for chloroperoxidase catalyzed oxidation. Biotechnol Bioeng 55:283–288CrossRefGoogle Scholar
  148. Selinheimo E, Autio K, Kruus K, Buchert J (2007) Elucidating the mechanism of laccase and tyrosinase in wheat bread making. J Agric Food Chem 55:6357–6365CrossRefGoogle Scholar
  149. Selinheimo E, Lampila P, Mattinen ML, Buchert J (2008) Formation of protein-oligosaccharide conjugates by laccase and tyrosinase. J Agric Food Chem 56:3118–3128CrossRefGoogle Scholar
  150. Seo SY, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837–2853CrossRefGoogle Scholar
  151. Shinmen Y, Asami S, Amachi T, Shimizu S, Yamada H (1986) Crystallization and characterization of an extracellular fungal peroxidase. Agric Biol Chem 50:247–249CrossRefGoogle Scholar
  152. Si JQ (2001) Use of laccase in baking. Patent US 6296883 B1Google Scholar
  153. Silverman HG, Roberto FF (2007) Understanding marine mussel adhesion. Mar Biotechnol 9:661–681CrossRefGoogle Scholar
  154. Singh H (1999) Mechanism of oxidation of L-tyrosine by fungal tyrosinases. J Chem 172:83Google Scholar
  155. Smith AT, Ngo E (2007) Novel peroxidases and uses. Patent WO 2007/020428 A1Google Scholar
  156. Steffensen CL, Andersen ML, Degn PE, Nielsen JH (2008) Cross-linking proteins by laccase-catalyzed oxidation: importance relative to other modifications. J Agric Food Chem 56:12002–12010CrossRefGoogle Scholar
  157. Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403CrossRefGoogle Scholar
  158. Sugano Y, Sasaki K, Shoda M (1999) cDNA cloning and genetic analysis of a novel decolorizing enzyme, peroxidase gene dyp from Geotrichum candidum Dec 1. J Biosci Bioeng 87:411–417CrossRefGoogle Scholar
  159. Sugano Y, Nakano R, Sasaki K, Shoda M (2000) Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. Appl Environ Microbiol 66:1754–1758CrossRefGoogle Scholar
  160. Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem 282:36652–36658CrossRefGoogle Scholar
  161. Sugano Y, Matsushima Y, Tsuchiya K, Aoki H, Hirai M, Shoda M (2009) Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec. Biodegradation 20:433–440CrossRefGoogle Scholar
  162. Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid. Structure 3:1367–1377CrossRefGoogle Scholar
  163. Suske WA, Held M, Schmid A, Fleischmann T, Wubbolts MG, Kohler HP (1997) Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1. J Biol Chem 272:24257–24265CrossRefGoogle Scholar
  164. Svitel J, Miertus S (1998) Development of tyrosinase-based biosensors and its application for monitoring of bioremedation of phenol and phenolic compounds. Environ Sci Technol 32:828–832CrossRefGoogle Scholar
  165. Syoda M, Sugano Y, Kubota H (2006) Enzyme having decolorizing activity and method for decolorizing dyes by using the same. United States Patent 7041486 B1Google Scholar
  166. ten Have R, Franssen MC (2001) On a revised mechanism of side product formation in the lignin peroxidase catalyzed oxidation of veratryl alcohol. FEBS Lett 487:313–317CrossRefGoogle Scholar
  167. Thalmann CR, Lötzbeyer T (2002) Enzymatic cross-linking of proteins with tyrosinase. Eur Food Res Technol 214:276–281CrossRefGoogle Scholar
  168. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26CrossRefGoogle Scholar
  169. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284CrossRefGoogle Scholar
  170. Ullrich R, Hofrichter M (2005) The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579:6247–6250CrossRefGoogle Scholar
  171. Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293CrossRefGoogle Scholar
  172. Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581CrossRefGoogle Scholar
  173. Ullrich R, Dolge C, Kluge M, Hofrichter M (2008) Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. FEBS Lett 582:4100–4106CrossRefGoogle Scholar
  174. Ullrich R, Liers C, Schimpke S, Hofrichter M (2009) Purification of homogeneous forms of fungal peroxygenase. Biotechnol J 4:1619–1626Google Scholar
  175. Uyama H, Kobayashi S (2003) Enzymatic syntheses of polyphenols. Curr Org Chem 7:1387–1397CrossRefGoogle Scholar
  176. van de Velde F, Bakker M, van Rantwijk F, Sheldon RA (2001a) Chloroperoxidase-catalyzed enantioselective oxidations in hydrophobic organic media. Biotechnol Bioeng 72:523–529CrossRefGoogle Scholar
  177. van de Velde F, van Rantwijk, Sheldon, RA (2001b) Improving the catalytic performance of peroxidases in organic synthesis. Trends Biotechnol 19:73–80CrossRefGoogle Scholar
  178. van Gelder CWG, Flurkeya WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45:1309–1323CrossRefGoogle Scholar
  179. van Pee KH, Dong C, Flecks S, Naismith J, Patallo EP, Wage T (2006) Biological halogenation has moved far beyond haloperoxidases. Adv Appl Microbiol 59:127–157CrossRefGoogle Scholar
  180. Vazquez Duhalt R, del Pilar Bremauntz M, Barzana E, Tinoco R (2002) Enzymatic oxidation process for desulfurization of fossil fuels. United States Patent 6461859 B1Google Scholar
  181. Veeger C (2002) Does P450-type catalysis proceed through a peroxo-iron intermediate? A review of studies with microperoxidase. J Inorg Biochem 91:35–45CrossRefGoogle Scholar
  182. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259CrossRefGoogle Scholar
  183. Vidal JC, Esteban S, Gil J, Castillo JR (2006) A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide. Talanta 68:791–799CrossRefGoogle Scholar
  184. Waite JH (1990) Marine adhesive proteins: natural composite thermosets. Int J Biol Macromol 12:139–144CrossRefGoogle Scholar
  185. Welinder KG, Mauro JM, Norskov-Lauritsen L (1992) Structure of plant and fungal peroxidases. Biochem Soc Trans 20:337–340Google Scholar
  186. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187CrossRefGoogle Scholar
  187. Widsten P, Kandelbauer A (2008) Adhesion improvement of lignocellulosic products by enzymatic pre-treatment. Biotechnol Adv 26:379–386CrossRefGoogle Scholar
  188. Widsten P, Tuominen S, Qvintus-Leino P, Laine JE (2004) The influence of high defibration temperature on the properties of medium-density fiberboard (MDF) made from laccase-treated softwood fibers. Wood Sci Technol 38:521–528CrossRefGoogle Scholar
  189. Wong CM, Wong KH, Chen XD (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78:927–938CrossRefGoogle Scholar
  190. Wu P, Santoni G, Froba M, Rehder D (2008) Modelling the sulfoxygenation activity of vanadate-dependent peroxidases. Chem Biodivers 5:1913–1926CrossRefGoogle Scholar
  191. Xu F, Damhus T, Danielsen S, Ostergaard LH (2007) Catalytic applications of laccase. In: Schmid RD, Urlacher VB (eds) Modern biooxidation. Enzymes, reactions and applications. Wiley-VCH, Weinheim, pp 43–75.CrossRefGoogle Scholar
  192. Yamazaki S, Morioka C, Itoh S (2004) Kinetic evaluation of catalase and peroxygenase activities of tyrosinase. Biochemistry 43:11546–11553CrossRefGoogle Scholar
  193. Yoshida H (1883) Chemistry of lacquer (urushi). J Chem Soc Trans 43:472–486CrossRefGoogle Scholar
  194. Zelena K, Hardebusch B, Hülsdau B, Berger RG, Zorn H (2009a) Generation of norisoprenoid flavors from carotenoids by fungal peroxidases. 57:9951–9955Google Scholar
  195. Zelena K, Zorn H, Nimtz M, Berger RG (2009b) Heterologous expression of the msp2 gene from Marasmius scorodonius. Arch Microbiol 191:397–402CrossRefGoogle Scholar
  196. Zhang LH, Bai CH, Wang YS, Jiang YC, Hu MC, Li SN, Zhai QG (2009) Improvement of chloroperoxidase stability by covalent immobilization on chitosan membranes. Biotechnol Lett 31:1269–1272CrossRefGoogle Scholar
  197. Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG (2003) A peroxidase from Lepista irina cleaves beta,beta-carotene to flavor compounds. Biol Chem 384:1049–1056CrossRefGoogle Scholar
  198. Zorn H, Scheibner M, Hülsdau B, Berger RG, de Boer L, Meima RB (2005) Novel enzymes for use in enzymatic bleaching of food products. European Patent Application EP 64132 20060712Google Scholar
  199. Zorn H, Szweda RT, Wilms J, Kumar M (2008) Method for modifying non-starch carbohydrate material. European Patent Application 26485/EP/P0Google Scholar
  200. Zubieta C, Joseph R, Krishna SS, McMullan D, Kapoor M, Axelrod HL, Miller MD, Abdubek P, Acosta C, Astakhova T, Carlton D, et al (2007a) Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Proteins 69:234–243CrossRefGoogle Scholar
  201. Zubieta C, Krishna SS, Kapoor M, Kozbial P, McMullan D, Axelrod HL, Miller MD, Abdubek P, Ambing E, Astakhova T, Carlton D, et al (2007b) Crystal structures of two novel dye-decolorizing peroxidases reveal a beta-barrel fold with a conserved heme-binding motif. Proteins 69:223–233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Bio- and Environmental SciencesInternational Graduate School of ZittauZittauGermany

Personalised recommendations