Asian Fungal Fermented Food

Part of the The Mycota book series (MYCOTA, volume 10)


In Asian countries, there is a long history of fermentation of foods and beverages. Diverse micro-organisms, including bacteria, yeasts and moulds, are used as starters, and a wide range of ingredients can be made into fermented foods. The main raw materials include cereals, leguminous seeds, vegetables, meat and fish. This chapter focuses on some representative foods, their traditional manufacturing, the major fungi involved in the fermentation, the biochemical changes taking place during fermentation and their implications for human health, and aspects of their industrialization. The foods discussed are: (1) tempe, an Indonesian meat alternative consisting of cooked soy beans fermented with Rhizopus spp., (2) red kojic rice or angkak, a pigmented health-functional ingredient consisting of rice fermented by Monascus spp., (3) amylolytic starters used for alcoholic fermentation, consisting of rice flour and a range of starch degrading moulds and alcohol producing yeasts, (4) furu, a condiment side dish consisting of soya bean curd fermented and partially degraded by the mould Actinomucor elegans, (5) soy sauce, a condiment sauce made from wheat and soy beans and fermented with Aspergillus spp., yeasts and lactic acid bacteria, (6) rice wines, such as sake, fermented with various moulds and yeasts, and (7) Chinese liquor, distilled from yeast fermented cooked sorghum. Conclusions and future prospects are discussed.


  1. Aidoo KE, Hendry R, Wood BJB (1984) Mechanized fermentation systems for the production of experimental soy sauce koji. J Food Technol 19:389–398CrossRefGoogle Scholar
  2. Aidoo KE, Smith JE, Wood BJB (1994) Industrial aspects of soy sauce fermentations using Aspergillus. In: Powell KA, Renwick A, Peberdy JF (eds) The genus Aspergillus: from taxonomy and genetics to industrial application. Plenum, New York, pp 155–169Google Scholar
  3. Aidoo KE, Nout MJR, Sarkar PK (2006) Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Res 6:30–39CrossRefGoogle Scholar
  4. Akihisa T, Tokuda H, Yasukawa K, Ukiya M, et al (2005) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J Agric Food Chem 53:562–565CrossRefGoogle Scholar
  5. Aoki H, Furuya Y, Endo Y, Fujimoto K (2003a) Effect of gamma-aminobutyric acid-enriched tempeh-like fermented soybean (GABA-tempeh) on the blood pressure of spontaneously hypertensive rats. Biosci Biotechnol Biochem 67:1806–1808CrossRefGoogle Scholar
  6. Aoki H, Uda I, Tagami K, Furuya Y, Endo Y, Fujimoto K (2003b) The production of a new tempeh-like fermented soybean containing a high level of gamma-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci Biotechnol Biochem 67:1018–1023CrossRefGoogle Scholar
  7. Ariffin R, Apostolopoulos C, Graffham A, MacDougall D Owens JD (1994) Assessment of hyphal binding in tempe. Lett Appl Microbiol 18:32–34CrossRefGoogle Scholar
  8. Basuki T, Dahyia DS, Gacutan Q, Jackson H, Ko SD, Park KI, et al (1996) Indigenous fermented foods in which ethanol is a major product. In: Steinkraus KH (ed) Handbook of indigenous fermented foods. Dekker, New York, pp 363–508Google Scholar
  9. Batra LR (1986) Microbiology of some fermented cereals and grain legumes of India and vicinity. In: Hesseltine CW, Wang HL (eds) Indigenous fermented food of non-Western origin. Cramer, Berlin, pp 85–104Google Scholar
  10. Baumann U, Bisping B (1995) Proteolysis during tempe fermentation. Food Microbiol 12:39–47CrossRefGoogle Scholar
  11. Blanc PJ, Loret MO, Santerre AL, Pareilleux A, et al (1994) Pigments of Monascus. J Food Sci 59:862–865CrossRefGoogle Scholar
  12. Brimer L, Nout MJR, Tuncel G (1998) Beta-glycosidase (amygdalase and linamarase) from Endomyces fibuliger (LU677): formation and crude enzyme properties. Appl Microbiol Biotechnol 49:182–188CrossRefGoogle Scholar
  13. Calvert TW, Aidoo KE, Candlish AGG, Mohd Fuat AR (2005) Comparison of in vitro cytotoxicity of Fusarium mycotoxins, deoxynivalenol, T-2 toxin and zearalenone on selceted human epithelial cell lines. Mycopathologia 159:413–419CrossRefGoogle Scholar
  14. Campbell-Platt G (1987) Fermented foods of the world. A dictionary and guide. Butterworth Scientific, GuildfordGoogle Scholar
  15. Chiao JS (1986) Modernization of traditional Chinese fermented foods and beverages. In: Hesseltine CW, Wang HL (eds) Indigenous fermented food of non-Western origin. Cramer, Berlin, pp 37–53Google Scholar
  16. Chou CC, Hwan CH (1994) Effect of ethanol on the hydrolysis of protein and lipid during the ageing of a Chinese fermented soya bean curd – sufu. J Sci Food Agric 66:393–398CrossRefGoogle Scholar
  17. Chou CC, Rwan J-H (1995) Mycelial propagation and enzyme production in koji prepared with Aspergillus oryzae on various rice extrudates and steamed rice. J Ferment Bioeng 79:509–512CrossRefGoogle Scholar
  18. Chou CC, Ho FM, Tsai CS (1988) Effects of temperature and relative humidity on the growth of and enzyme production by Actinomucor taiwanensis during sufu pehtze preparation. Appl Environ Microbiol 54:688–692Google Scholar
  19. Chung HY, Ma WCJ, Kim JS, Chen F (2004) Odor-active headspace components in fermented red rice in the presence of a Monascus species. J Agric Food Chem 52:6557–6563CrossRefGoogle Scholar
  20. Cook PE, Campbell-Platt G (1994) Aspergillus and fermented foods. In: Powell KA, Renwick A, Peberdy JF (eds) The genus Aspergillus: from taxonomy and genetics to industrial application. Plenum, New York, pp 171–188Google Scholar
  21. Cronk TC, Steinkraus KH, Hackler LR, Mattick LR (1977) Indonesian tape ketan fermentation. Appl Environ Microbiol 33:1067–1073Google Scholar
  22. De Reu JC, Rombouts FM, Nout MJR (1995) Influence of acidity and initial substrate temperature on germination of Rhizopus oligosporus sporangiospores in tempe fermentation. J Appl Bacteriol 78:200–208CrossRefGoogle Scholar
  23. De Reu JC, Linssen VAJM, Rombouts FM, Nout MJR (1997) Consistency, polysaccharidase activities and non-starch polysaccharides content of soya beans during tempe fermentation. J Sci Food Agric 73:357–363CrossRefGoogle Scholar
  24. Dwidjoseputro D, Wolf FT (1970) Microbiological studies of Indonesian fermented foodstuffs. Mycopathol Mycol Appl 41:211–222CrossRefGoogle Scholar
  25. Eklund Jonsson C, Sandberg AS, Alminger ML (2006) Reduction of phytate content while preserving minerals during whole grain cereal tempe fermentation. J Cereal Sci 44:154–160CrossRefGoogle Scholar
  26. Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ (1993) Production and food applications of the red pigments of Monascus ruber. J Food Sci 58:1099–1110CrossRefGoogle Scholar
  27. Fan WL, Qian MC (2005) Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese “Yanghe Daqu” liquors. J Agric Food Chem 53:7931–7938CrossRefGoogle Scholar
  28. Fan WL, Qian M (2006a) Characterization of aroma compounds of Chinese “Wuliangye” and “Jiannanchun” liquors by aroma extract dilution analysis. J Agric Food Chem 54:2695–2704CrossRefGoogle Scholar
  29. Fan WL, Qian MC (2006b) Identification of aroma compounds in Chinese “Yanghe Daqu” liquor by normal phase chromatography fractionation followed by gas chromatography olfactometry. Flavour Fragrance J 21:333–342CrossRefGoogle Scholar
  30. Fan WL, Xu Y, Zhang Y-H (2007) Characterization of pyrazines in some Chinese liquors and their approximate concentrations. J Agric Food Chem 55:9956–9962CrossRefGoogle Scholar
  31. Frisvad JC (1986) Taxonomic approaches to mycotoxin identification (taxonomic indication of mycotoxin content in foods). In: Cole RJ (ed) Modern methods in the analysis and structural elucidation of mycotoxins. Academic, New York, pp 415–436CrossRefGoogle Scholar
  32. Fu L, Zhou WB, Gao KR (1996) Fermentation characteristics of a high yielding strain of Monascus anka. Food Sci China 17:6–9Google Scholar
  33. Fukushima D (1985) Fermented vegetable protein and related foods of Japan and China. Food Rev Int 1:149–209CrossRefGoogle Scholar
  34. Fukushima D (1998) Oriental fungal fermented foods. Int Mycol Congr Abstr 6:173Google Scholar
  35. Gekkeikan (2008) Development of technology for producing bioethanol from non-food materials using super koji. Gekkeikan Research Institute. Accessed 7 January 2009
  36. Gibbs BF, Zougman A, Masse R, Mulligan C (2004) Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int 37:123–131CrossRefGoogle Scholar
  37. Ginting E, Arcot J (2004) High-performance liquid chromatographic determination of naturally occurring folates during tempe preparation. J Agric Food Chem 52:7752–7758CrossRefGoogle Scholar
  38. Graffham AJ, Gordon MH, Westby A, Owens JD (1995) Nutrition of tempe moulds. Lett Appl Microbiol 21:223–227CrossRefGoogle Scholar
  39. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauchan B (2003) Microbial α-amylase: a biotechnological perspective. Process Biochem 38:1599–1616CrossRefGoogle Scholar
  40. Gutierrez GE, Benjamin M, Rossini G, Garrett IR, Chen ST, Mundy GR (2006) Red yeast rice stimulates bone formation in rats. Nutr Res 26:124–129CrossRefGoogle Scholar
  41. Hachmeister KA, Fung DYC (1993) Tempeh – a mold-modified indigenous fermented food made from soybeans and/or cereal grains. Crit Rev Microbiol 19:137–188CrossRefGoogle Scholar
  42. Hamada T, Sugishita M, Fukushima Y, Fukase T, Motai H (1991) Continuous production of soy sauce by a bioreactor system. Process Biochem 26:39–45CrossRefGoogle Scholar
  43. Han BZ, Kiers JL, Nout MJR (1999) Solid-substrate fermentation of soybeans with Rhizopus spp.: comparison of discontinuous rotation with stationary bed fermentation. J Biosci Bioeng 88:205–209CrossRefGoogle Scholar
  44. Han BZ, Beumer RR, Rombouts FM, Nout MJR (2001a) Microbiological safety and quality of commercial sufu – a Chinese fermented soybean food. Food Control 12:541–547CrossRefGoogle Scholar
  45. Han BZ, Rombouts FM, Nout MJR (2001b) A Chinese fermented soybean food. Int J Food Microbiol 65:1–10CrossRefGoogle Scholar
  46. Han BZ, Ma Y, Rombouts FM, Nout MJR (2003a) Effects of temperature and relative humidity on growth and enzyme production by Actinomucor elegans and Rhizopus oligosporus during Sufu Pehtze preparation. Food Chem 81:27–34CrossRefGoogle Scholar
  47. Han BZ, Wang JH, Rombouts FM, Nout MJR (2003b) Effect of NaCl on textural changes and protein and lipid degradation during the ripening stage of sufu, a Chinese fermented soybean food. J Sci Food Agric 83:899–904CrossRefGoogle Scholar
  48. Han BZ, Kuijpers AFA, Thanh NV, Nout MJR (2004a) Mucoraceous moulds involved in the commercial fermentation of Sufu Pehtze. Antonie van Leeuwenhoek 85:253–257CrossRefGoogle Scholar
  49. Han BZ, Cao C-F, Rombouts FM, Nout MJR (2004b) Microbial changes during the production of Sufu – a Chinese fermented soybean food. Food Control 15:265–270CrossRefGoogle Scholar
  50. Han BZ, Rombouts FM, Nout MJR (2004c) Amino acid profiles of sufu, a Chinese fermented soybean food. J Food Compos Anal 17:689–698CrossRefGoogle Scholar
  51. Han BZ, Sesenna, B, Beumer, RR, Nout, MJR (2005) Behaviour of Staphylococcus aureus during Sufu production at laboratory scale. Food Control 16:243–247CrossRefGoogle Scholar
  52. Handoyo T, Maeda T, Urisu A, Adachi T, Morita N (2006) Hypoallergenic buckwheat flour preparation by Rhizopus oligosporus and its application to soba noodle. Food Res Int 39:598–605CrossRefGoogle Scholar
  53. Hering L, Bisping B, Rehm HJ (1990) Fatty acid composition during tempe fermentation. In: Mahmud, MKMS, Karyadi, D (eds) Second Asian symposium on non-salted soybean fermentation, 13–15 February. Indonesia Nutrition Research and Development Centre, Jakarta, pp 63–70Google Scholar
  54. Heskamp ML, Barz W (1998) Expression of proteases by Rhizopus species during tempeh fermentation of soybeans. Nahrung Food 42:23–28CrossRefGoogle Scholar
  55. Hesseltine CW, Kurtzman CP (1990) Yeasts in amylolytic food starters. An Inst Biol Univ Nac Auton Mex Ser Bot 60:1–7Google Scholar
  56. Hesseltine CW, Featherston CL, Lombard GL, Dowell VR Jr (1985) Anaerobic growth of molds isolated from fermentation starters used for foods in Asian countries. Mycologia 77:390–400CrossRefGoogle Scholar
  57. Hesseltine CW, Rogers R, Winarno FG (1988) Microbiological studies on amylolytic Oriental fermentation starters. Mycopathologia 101:141–155CrossRefGoogle Scholar
  58. Hirooka K, Yamamoto Y, Tsutsui N, Tanaka T (2005) Improved production of isoamyl acetate by a sake yeast mutant resistant to an isoprenoid analog and its dependence on alcohol acetyltransferase activity, but not on isoamyl alcohol production. J Biosci Bioeng 99:125–129CrossRefGoogle Scholar
  59. Hong MY, Seerarn NP, Zhang YJ, Heber D (2008) Anticancer effects of Chinese red yeast rice versus monacolin K alone on colon cancer cells. J Nutr Biochem 19:448–458CrossRefGoogle Scholar
  60. Hong YJ, Kim JG, Woo HC, Kim SU (1995) Effects of feeding intermediate and starter units on Monascus pigments production. Agric Chem Biotechnol 38:31–36Google Scholar
  61. Hwan C-H, Chou C-C (1999) Volatile components of the Chinese fermented soya bean curd as affected by the addition of ethanol in ageing solution. J Sci Food Agric 79:243–248CrossRefGoogle Scholar
  62. Jennessen J, Nielsen KF, Houbraken J, Lyhne EK, Schnürer J, Frisvad JC, Samson RA (2005) Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. J Agric Food Chem 53:1833–1840CrossRefGoogle Scholar
  63. Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawada T, Lim BO, Park DK (2004) Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci 75:3195–3203CrossRefGoogle Scholar
  64. JFSSMC (2009) Japan Federation of Soy Sauce Manufacturers Cooperatives: who brews soy sauce in Japan? Accessed 6 January 2009
  65. Jongrungruangchok S, Kittakoop P, Yonsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtar Anonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575CrossRefGoogle Scholar
  66. Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170CrossRefGoogle Scholar
  67. Juzlova P, Rezanka T, Viden I (1998) Identification of volatile metabolites from rice fermented by the fungus Monascus purpureus (ang-kak). Folia Microbiol 43:407–410CrossRefGoogle Scholar
  68. Kang SK, Jung ST (1995) Pigment production and color difference of liquid beni-koji under submerged cultural conditions. Korean J Appl Microbiol Biotechnol 23:472–478Google Scholar
  69. Kasaoka S, Astuti M, Uehara M, Suzuki K, Goto S (1997) Effect of Indonesian fermented soybean tempeh on iron bioavailability and lipid peroxidation in anemic rats. J Agric Food Chem 45:195–198CrossRefGoogle Scholar
  70. Kataoka S (2005) Functional effects of Japanese style fermented soy sauce (shoyu) and its components. J Biosci Bioeng 100:227–234CrossRefGoogle Scholar
  71. Kiers JL, Nout MJR, Rombouts FM (2000) In vitro digestibility of processed and fermented soya bean, cowpea and maize. J Sci Food Agric 80:1325–1331CrossRefGoogle Scholar
  72. Kiers JL, Meijer JC, Nout MJR, Rombouts FM, Nabuurs MJA, Van der Meulen J (2003) Effect of fermented soya beans on diarrhoea and feed efficiency in weaned piglets. J Appl Microbiol 95:545–552CrossRefGoogle Scholar
  73. Kiers JL, Nout MJR, Rombouts FM, Van Andel EE, Nabuurs MJA, Van der Meulen J (2006) Effect of processed and fermented soya bean on net absorption in enterotoxigenic Escherichia coli-infected piglet small intestine. Br J Nutr 95:1193–1198CrossRefGoogle Scholar
  74. Kiers JL, Nout MJR, Rombouts FM, Nabuurs MJA, van der Meulen J (2007) A high molecular weight soluble fraction of tempeh protects against fluid losses in Escherichia coli-infected piglet small intestine. Br J Nutr 98:320–325CrossRefGoogle Scholar
  75. Kim HJ, Ji GE, Lee I (2007) Natural occurring levels of citrinin and monacolin K in Korean Monascus fermentation products. Food Sci Biotechnol 16:142–145Google Scholar
  76. Kim S-J, Ko S-H, Lee W-Y, Kim G-W (2004) Cytotoxic effects of Korean rice-wine (Yakju) on cancer cells. Korean J Food Sci Technol 36:812–817Google Scholar
  77. Klus K, Barz W (1998) Formation of polyhydroxylated isoflavones from the isoflavones genistein and biochanin A by bacteria isolated from tempe. Phytochemistry 47:1045–1048Google Scholar
  78. Knecht A, Cramer B, Humpf HU (2006) New Monascus metabolites: structure elucidation and toxicological properties studied with immortalized human kidney epithelial cells. Mol Nutr Food Res 50:314–321CrossRefGoogle Scholar
  79. Ko SD (1986) Indonesian fermented foods not based on soybeans. In: Hesseltine CW, Wang HL (eds) Indigenous fermented food of non-western origin. Mycologia memoir no 11. Cramer, Berlin, pp 67–84Google Scholar
  80. Ko SD, Hesseltine CW (1979) Tempe and related foods. In: Rose AH (ed) Microbial biomass. Academic, London, pp 115–140Google Scholar
  81. Kozaki M, Uchimura T (1990) Micro-organisms in Chinese starter ‘bubod’ and rice wine ‘tapuy’ in the Philippines. J Brew Soc Jpn 85:818–824Google Scholar
  82. Kung HF, Lee YH, Chang SC, Wei CI, Tsai YH (2007) Histamine contents and histamine-forming bacteria in sufu products in Taiwan. Food Control 18:381–386CrossRefGoogle Scholar
  83. Lee CL, Wang JJ, Pan TM (2008a) Red mold rice extract represses amyloid beta peptide-induced neurotoxicity via potent synergism of anti-inflammatory and antioxidative effect. Appl Microbiol Biotechnol 79:829–841CrossRefGoogle Scholar
  84. Lee IH, Hung YH, Chou CC (2008b) Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean. Int J Food Microbiol 121:150–156CrossRefGoogle Scholar
  85. Lee YK, Chen DC, Chauvatcharin S, Seki T, Yoshida T (1995) Production of Monascus pigments by a solid-liquid state culture method. J Ferment Bioeng 79:516–518CrossRefGoogle Scholar
  86. Li L, Yang ZY, Yang XQ, Zhang GH, Tang SZ, Chen F (2008) Debittering effect of Actinomucor elegans peptidases on soybean protein hydrolysates. J Ind Microbiol Biotechnol 35:41–47CrossRefGoogle Scholar
  87. Lim G (1991) Indigenous fermented foods in south east asia. ASEAN Food J 6:83–101Google Scholar
  88. Lin C-H, Wei Y-T, Chou C-C (2006) Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food Microbiol 23:628–633CrossRefGoogle Scholar
  89. Lin M-S, Wang H-H (1991) Anaerobic growth and oxygen toxicity of Rhizopus cultures isolated from starters made by solid state fermentation. Chin J Microbiol Immunol 24:229–239Google Scholar
  90. Lin YL, Wang TH, Lee MH, Su NW (2008) Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77:965–973CrossRefGoogle Scholar
  91. Liou GY, Chen CC, Chien CY, Hsu WH (1990) Atlas of the genus Rhizopus and its allies. Food Industry Research and Development Institute, Hsinchu, Taiwan, ROCGoogle Scholar
  92. Liu BH, Wu TS, Su MC, Chung CP, Yu FY (2005) Evaluation of citrinin occurrence and cytotoxicity in Monascus fermentation products. J Agric Food Chem 53:170–175CrossRefGoogle Scholar
  93. Lotong N (1998) Koji. In: Wood BJB (ed) Microbiology of fermented foods. Blackie, London, pp 658–695CrossRefGoogle Scholar
  94. Lu JM, Yu RC, Chou CC (1996) Purification and some properties of glutaminase from Actinomucor taiwanensis, starter of sufu. J Sci Food Agric 70:509–514CrossRefGoogle Scholar
  95. Lucas J, Schumacher J, Kunz B (1993) Solid-state fermentation of rice by Monascus purpureus. J Korean Soc Food Sci 9:149–159Google Scholar
  96. Manabe M (2001) Fermented foods and mycotoxins. J Jpn Assoc Mycotoxicol 51:25–29Google Scholar
  97. Martinkova L, Juzlova P, Vesely D (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616CrossRefGoogle Scholar
  98. Matsuo M (1996) Digestibility of Okara-tempe protein in rats. J Jpn Soc Food Sci Technol 43:1059–1062CrossRefGoogle Scholar
  99. Matsuo M, Nakamura N, Shidoji Y, Muto Y, Esaki H, Osawa T (1997) Antioxidative mechanism and apoptosis induction by 3 hydroxyanthranilic acid, an antioxidant in Indonesian food tempeh, in the human hepatoma derived cell line, HUH 7. J Nutr Sci Vitaminol 43:249–259CrossRefGoogle Scholar
  100. McVeigh BL, Dillingham BL, Lampe JW, Duncan AM (2006) Effect of soy protein varying in isoflavone content on serum lipids in healthy men. Am J Clin Nutr 83:244–251Google Scholar
  101. Merican Z, Yeoh Q-L (1989) Tapai processing in Malaysia: a technology in transition. In: Steinkraus KH (ed) Industrialization of indigenous fermented foods. Dekker, New York, pp 169–190Google Scholar
  102. Mheen TI, Kwon TW, Lee CH (1986) Traditional fermented food products in Korea. In: Hesseltine CW, Wang HL (eds) Indigenous fermented food of non-western origin. Mycologia memoir no 11. Cramer, Berlin, pp 86–105Google Scholar
  103. Mitchell DA, Greenfield PF, Doelle HW (1990) Mode of growth of Rhizopus oligosporus on a model substrate in solid state fermentation. World J Microbiol Biotechnol 6:201–208CrossRefGoogle Scholar
  104. Miyake T, Kong I, Nozaki N, Sammoto H (2008) Analysis of pigment compositions in various Monascus cultures. Food Sci Technol Res 14:194–197CrossRefGoogle Scholar
  105. Mohd Fuat AR, Aidoo KE, Calvert TW, Candlish AGG (2006) Mycoflora, cytotoxicity and DNA interaction of polyherbal products from Malaysia. Pharm Biol 44:1–9CrossRefGoogle Scholar
  106. Mulyowidarso RK, Fleet GH, Buckle KA (1990) Association of bacteria with the fungal fermentation of soybean tempe. J Appl Bacteriol 68:43–47CrossRefGoogle Scholar
  107. Murakami H, Hayashi K, Ushijimi S (1982) Useful key characters separating three Aspergillus taxa – A. sojae, A. parasiticus, A. toxicarius. J Gen Appl Microbiol 28:55–60CrossRefGoogle Scholar
  108. Murooka Y, Yamshita M (2008) Traditional healthful fermented products of Japan. J Ind Microbiol Biotechnol 35:791–798CrossRefGoogle Scholar
  109. Naersong N, Tanaka Y, Mori N, Kitamoto Y (1996) Microbial flora of “airag”, a traditional fermented milk of Inner-Mongolia in China. Anim Sci Technol 67:78–83Google Scholar
  110. Nakajima N, Nozaki N, Ishihara K, Ishikawa A, Tsuji H (2005) Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isoflavone-enriched tempeh. J Biosci Bioeng 100:685–687CrossRefGoogle Scholar
  111. Nguyen TTT, Loiseau G, Icard Verniere C, Rochette I, Treche S, Guyot JP (2007) Effect of fermentation by amylolytic lactic acid bacteria, in process combinations, on characteristics of rice/soybean slurries: a new method for preparing high energy density complementary foods for young children. Food Chem 100:623–631CrossRefGoogle Scholar
  112. Nout MJR (1992) Ecological aspects of mixed-culture food fermentations. In: Carroll GC, Wicklow DT (eds) The fungal community: its organization and role in the ecosystem. Dekker, New York, pp 817–851Google Scholar
  113. Nout MJR (1995) Useful role of fungi in food processing. In: Samson RA, Hoekstra E, Frisvad JC, Filtenborg O (eds) Introduction to food-borne fungi. Centraal Bureau voor Schimmelcultures, Baarn, pp 295–303Google Scholar
  114. Nout MJR (2005) Health functionality of fermented soybean foods. In: Nout MJR, De Vos WM, Zwietering MH (eds) Food fermentation. Wageningen Academic, Wageningen, pp 95–100Google Scholar
  115. Nout MJR, Kiers JL (2005) Tempe fermentation, innovation and functionality: up-date into the 3rd millenium. J Appl Microbiol 98:789–805CrossRefGoogle Scholar
  116. Nout MJR, Rombouts FM (1990) Recent developments in tempe research. J Appl Bacteriol 69:609–633CrossRefGoogle Scholar
  117. Nout MJR, Martoyuwono TD, Bonné PCJ, Odamtten GT (1992) Hibiscus leaves for the manufacture of Usar, a traditional inoculum for tempe. J Sci Food Agric 58:339–346CrossRefGoogle Scholar
  118. Nout MJR, Rinzema A, Smits JP (1997) Biomass and productivity estimates in solid substrate fermentations. In: Wicklow DT, Soderstrom B (eds) Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 323–345Google Scholar
  119. Nout MJR, Sarkar PK, Beuchat LR (2007) Indigenous fermented foods. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers. ASM, Washington, D.C., pp 817–835Google Scholar
  120. Ohantaek H, Mudgett RE (1992) Effects of oxygen and carbon dioxide partial pressures on Monascus growth and pigment production in solid-state fermentations. Biotechnol Progr 8:5–10CrossRefGoogle Scholar
  121. Ørgaard A, Jensen L (2008) The effects of soy isoflavones on obesity. Exp Biol Med 233:1066–1080CrossRefGoogle Scholar
  122. Pao S-C (1995) Halophilic organisms in sufu, Chinese cheese. Diss Abstr Int B 55:4190Google Scholar
  123. Park JW, Lee KH, Lee CY (1995) Identification of filamentous molds isolated from Korean traditional nuruk and their amylolytic acitivities. Korean J Appl Microbiol Biotechnol 23:737–746Google Scholar
  124. Partida Martinez LP, de Looss CF, Ishida K, Ishida M, Roth M, Buder K, Hertweck C (2007) Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl Environ Microbiol 73:793–797CrossRefGoogle Scholar
  125. Pastrana L, Blanc PJ, Santerre AL, Loret MO, Goma G (1995) Production of red pigments by Monascus ruber in synthetic media with a strictly controlled nitrogen source. Process Biochem 30:333–341Google Scholar
  126. Peñaloza W, Davey CL, Hedger JN, Kell DB (1992) Physiological studies on the solid-state quinoa tempe fermentation, using on-line measurements of fungal biomass production. J Sci Food Agric 59: 227–235CrossRefGoogle Scholar
  127. Peters N, Panitz C, Kunz B (1993) The influence of carbohydrate dissimilation on the fatty acid metabolism of Monascus purpureus. Appl Microbiol Biotechnol 39:589–592CrossRefGoogle Scholar
  128. Phytopathological Society of Japan (2000) Common names of plane diseases in Japan (in Japanese). Japan Plant Protection Association, TokyoGoogle Scholar
  129. Randhir R, Vattem DA, Shetty K (2004) Solid-state bioconversion of fava bean by Rhizopus oligosporus for enrichment of phenolic antioxidants and L-DOPA. Innov Food Sci Emerg Technol 5:235–244CrossRefGoogle Scholar
  130. Rao PF, Chen RM, Chen GR, Zheng YQ, Li JC, Liu ST, Li L, Shoemaker S (1996) A study of proteins in tofuru, Chinese fermented soy bean curd. IFT Annu Meet Book Abstr 1996:78.Google Scholar
  131. Raper KB, Fennell DI (1965) The genus Aspergillus. Williams and Wilkins, BaltimoreGoogle Scholar
  132. Rehms H, Barz W (1995) Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi. Appl Microbiol Biotechnol 44:47–52CrossRefGoogle Scholar
  133. Reiser V, Gasperik J (1995) Purification and characterization of the cell-wall-associated and extracellular alpha-glucosidases from Saccharomycopsis fibuligera. Biochem J 308:753–760Google Scholar
  134. Ribes JA, Vanover-Sams CL, Baker DJ (2000) Zygomycetes in human diseases. Clin Microbiol Rev 13:236–301CrossRefGoogle Scholar
  135. Roubos-van den Hil PJ, Nout MJR, Beumer RR, van der Meulen J, Zwietering MH (2009) Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells. J Appl Microbiol 106:1013–1021CrossRefGoogle Scholar
  136. Ruiz-Téran F, Owens JD (1999) Fate of oligosaccharides during production of soya bean tempe. J Sci Food Agric 79:249–252CrossRefGoogle Scholar
  137. Saito K, Abe A, Sujaya IN, Sone T, Oda Y (2004) Comparison of Amylomyces rouxii and Rhizopus oryzae in lactic acid fermentation of potato pulp. Food Sci Technol Res 10:224–226CrossRefGoogle Scholar
  138. Samson RA (1993a) The exploitation of moulds in fermented foods. In: Jones DG (ed) Exploitation of microorganisms. Chapman and Hall, London, pp 321–341CrossRefGoogle Scholar
  139. Samson RA (1993b) Taxonomy, current concepts of Aspergillus systematics. In: Smith JE (ed) Aspergillus. Biotechnology handbook, vol 7. Plenum, London, pp 1–22Google Scholar
  140. Samson RA, Hoekstra ES, Frisvad JC (2004) Introduction to food- and airborne fungi. Centraalbureau voor Schimmelcultures, UtrechtGoogle Scholar
  141. Saono S, Gandjar I, Basuki T (1996) Indigenous fermented foods in which ethanol is a major product. In: Steinkraus KH (ed) Handbook of indigenous fermented foods. Dekker, New York, pp 363–508Google Scholar
  142. Sarrette M, Nout MJR, Gervais P, Rombouts FM (1992) Effect of water activity on production and activity of Rhizopus oligosporus polysaccharidases. Appl Microbiol Biotechnol 37:420–425CrossRefGoogle Scholar
  143. Shurtleff W, Aoyagi A (2001) The book of tempeh, a cultured soyfood. Ten Speed, BerkeleyGoogle Scholar
  144. Sparringa RA, Owens JD (1999) Glucosamine content of tempe mould, Rhizopus oligosporus. Int J Food Microbiol 47:153–157CrossRefGoogle Scholar
  145. Sparringa RA, Kendall M, Westby A, Owens JD (2002) Effects of temperature, pH, water activity and CO2 concentration on growth of Rhizopus oligosporus NRRL 2710. J Appl Microbiol 92:329–337CrossRefGoogle Scholar
  146. Steinkraus KH (1996) Handbook of indigenous fermented foods. Dekker, New YorkGoogle Scholar
  147. Su Y-C (1986) Sufu. In: Reddy NR, Pierson MD, Salunkhe DK (eds) Legume-based fermented foods. CRC, Boca Raton, pp 69–83Google Scholar
  148. Sujaya IN, Antara NS, Sone T, Tamura Y, Aryanta WR, Yokota A, Asano K, Tomita F (2004) Identification and characterization of yeasts in brem, a traditional Balinese rice wine. World J Microbiol Biotechnol 20:143–150CrossRefGoogle Scholar
  149. Takeuchi A, Shimizu-Ibuka A, Nishiyama Y, Mura K, Okada S, Tokue C, Arai S (2006) Purification and characterization of an α-amylase of Pichia burtonii, isolated from traditional starter, ‘Murcha’ in Nepal. Biosci Biotechnol Biochem 70:3019–3024CrossRefGoogle Scholar
  150. Tanaka K (2002) Traditional Japanese fermented foods free from mycotoxin contamination. Jpn Agric Res Q 36:45–50Google Scholar
  151. Tanimura W, Sanchez PC, Kozaki M (1978) The fermented foods in the Philippines. Part II. Basi (sugarcane wine). J Agric Soc 22:118–133Google Scholar
  152. Thanh NV, Rombouts FM, Nout MJR (2007) Viability and physiological state transitions of Rhizopus oligosporus sporangiospores in tempe starter culture. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 91:35–44CrossRefGoogle Scholar
  153. Trucksess MW, Scott PM (2008) Mycotoxins in botanicals and dried fruits: a review. Food Add Contam 25:181–192CrossRefGoogle Scholar
  154. Trucksess MW, Mislevec PB, Young K, Bruce VE, Page SW (1987) Cyclopiazonic acid produced by cultures of Aspergillus and Penicillium spp. isolated from dried beans, corn meal, macaroni and pecans. J Assoc Anal Chem 70:123–126Google Scholar
  155. Tsuyoshi N, Fudou R, Yamanaka S, Kozaki M, Tamang N, Thapa S, Tamang JP (2005) Identification of yeast strains isolated from marcha in Sikkim, a microbial starter for amylolytic fermentation. Int J Food Microbiol 99:135–146CrossRefGoogle Scholar
  156. Varzakas T (1998) Rhizopus oligosporus mycelial penetration and enzyme diffusion in soya bean tempe. Process Biochem 33:741–747CrossRefGoogle Scholar
  157. Vo HN, Ngo KS, Trinh TH (1993) Filamentous fungi in rice alcohol production. J Sci Technol 2:36–40Google Scholar
  158. Wang C-L, Shi D-J, Gong G-L (2008a) Microorganisms in Daqu: a starter culture of Chinese Maotai-flavor liquor. World J Microbiol Biotechnol 24:2183–2190CrossRefGoogle Scholar
  159. Wang H-Y, Zhang X-J, Zhao L-P, Xu Y (2008b) Analysis and comparison of the bacterial community in fermented grains during the fermentation for two different styles of Chinese liquor. J Ind Microbiol Biotechnol 35:603–609CrossRefGoogle Scholar
  160. Wang HL, Fang SF (1986) History of Chinese fermented foods. In: Hesseltine CW, Wang HL (eds) Indigenous fermented food of non-western origin. Cramer, Berlin, pp 23–35Google Scholar
  161. Wang HL, Hesseltine CW (1970) Sufu and lao-chao. J Agric Food Chem 18:572–575CrossRefGoogle Scholar
  162. Wang JJ, Lee CL, Pan TM (2003) Improvement of monacolin K, gamma-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol 30:669–676CrossRefGoogle Scholar
  163. Wang JX, Lu ZL, Chi JM, Wang WH, Su MZ, Kou WR, Yu PL, Yu LJ, Zhu JS, Chang J (1997) Multicenter clinical trial of the serum lipid-lowering effects of a Monascus purpureus (red yeast) rice preparation from traditional Chinese medicine. Curr Ther Res Clin Exp 58:964–978CrossRefGoogle Scholar
  164. Watanabe M (2002) Sake yeast mutants with improved fermentative activity: isolation, application and a novel mechanism. Monograph. Seibutsu Kogakkaishi 80:57–63Google Scholar
  165. Went FAFC, Prinsen Geerligs HC (1895) Beobachtungen über die Hefearten und Zuckerbildenden Pilze der Arakfabrikation. Verhandel Koninkl Akad Wetensch Amsterdam Ser II 1895:3–31Google Scholar
  166. Wiesel I, Rehm HJ, Bisping B (1997) Improvement of tempe fermentations by application of mixed cultures consisting of Rhizopus sp. and bacterial strains. Appl Microbiol Biotechnol 47:218–225CrossRefGoogle Scholar
  167. Xie G-F, Li W-J, Lu J, Cao Y, Fang H, Zou H-J, Hu Z-M (2007) Isolation and identification of representative fungi from Shaoxing rice wine wheat Qu using a polyphasic approach of culture-based and molecular-based methods. J Inst Brew 113:272–279CrossRefGoogle Scholar
  168. Yasuda M, Kobayashi A (1989) Preparation and characterization of Tofuyo (fermented soybean curd). In: Ghee AH, Hen NB, Kong LK (eds) Trends in food biotechnology. Proceedings of the 7th world congress of food science and technology, Singapore, October 1987. Singapore Institute of Food Science and Technology, Singapore, pp 82–86Google Scholar
  169. Yin LJ, Li LT, Liu HE, Saito M, Tatsumi E (2005) Effects of fermentation temperature on the content and composition of isoflavones and B-glucosidase activity in sufu. Biosci Biotechnol Biochem 69:267–272CrossRefGoogle Scholar
  170. Yip CW, Liew CW, Nga BH (1997) Ribosomal RNA genes of Endomyces fibuliger: isolation, sequencing and the use of the 26S rRNA gene in integrative transformation of Saccharomyces cerevisiae for efficient expression of the alpha-amylase gene of Endomyces fibuliger. World J Microbiol Biotechnol 13:103–117CrossRefGoogle Scholar
  171. Yokotsuka T (1983) Scale up of traditional fermentation technology. Korean J Appl Microbiol Biotechnol 11:353–371Google Scholar
  172. Yokotsuka T, Sasaki M (1998) Fermented protein foods in the Orient: shoyu and miso in Japan. In: Wood BJB (ed) Microbiology of fermented foods. pp.351–415. Blackie, London, pp 351–415CrossRefGoogle Scholar
  173. Yusof RM, Baker TA, Morgan JB, Adams MR (1995) Effect of ragi and L-lactate-producing cultures on enteric pathogens in a rice-based weaning food. World J Microbiol Biotechnol 11:654–657CrossRefGoogle Scholar
  174. Zhang W-X, Qiao Z-W, Shigenmatsu T, Tang Y-Q, Hu C, Morimura S, Kida K (2005) Analysis of the bacterial community in Zaopei during production of Chinese Luzhou-flavor liquor. J Inst Brew 111:215–222CrossRefGoogle Scholar
  175. Zhang W-X, Qiao Z-W, Tang Y-Q, Hu C, Sun Q, Morimura S, Kida K (2007) Analysis of the fungal community in Zaopei during the production of Chinese Luzhou-flavour liquor. J Inst Brew 113:21–27CrossRefGoogle Scholar
  176. Zheng RY, Chen GQ (1998) Rhizopus microsporus var. tuberosus var. nov. Mycotaxon 69:181–186Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratory of Food MicrobiologyWageningen UniversityWageningenThe Netherlands
  2. 2.Food Research Laboratories, School of Biological and Biomedical SciencesGlasgow Caledonian UniversityGlasgowUK

Personalised recommendations