Biosorption of Metals

Chapter
Part of the The Mycota book series (MYCOTA, volume 10)

Abstract

Biosorption of metals from solution by fungal biomass is an alternative to conventional techniques for metal removal. The biomass can be produced for biosorption or be a waste product. The structures that bind heavy metals, the chemical nature of the binding groups at the cell wall and the uptake of metals into the cell are discussed. Data on reaction kinetics and thermodynamics of the sorption process are reviewed. The technology of biosorption and experiences with a pretreatment of the biomass to improve biosorption are further topics. Examples from the literature of heavy metal removal by fungal biomass are given.

References

  1. Akar T, Tunali S (2006) Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresour Technol 97:1780–1787Google Scholar
  2. Akar T, Tunali S, Cabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136:389–405Google Scholar
  3. Akhtar N, Sastry S, Mohan M (1995) Biosorption of silver anions by processed Aspergillus niger biomass. Biotechnol Lett 17:551–556Google Scholar
  4. Akthar N, Sastry S, Mohan M (1996) Mechanism of metal ion biosorption by fungal biomass. Biometals 9:21–28Google Scholar
  5. Akhtar K, Akhtar MW, Khalid AM (2008) Removal and recovery of zirconium from ist aqueous solution by Candida tropicalis. J Hazard Mat 156:108–117Google Scholar
  6. Akhtar K, Khalid AM, Akhtar MW, Ghauri MA (2009) Removal and recovery of uranium from aqueous solutions by Ca-alginate immobilized Trichoderma harzianum. Bioresour Technol 100:4551–4558Google Scholar
  7. Akira N, Takashi S (1993) Accumulation of uranium by basidiomycetes. Appl Microbiol Biotechnol 38:574–578Google Scholar
  8. Aksu Z, Balibek E (2007) Chromium(VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mat 145:210–220Google Scholar
  9. Aksu Z, Calik A, Dursun AY, Demircan Z (1999) Biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms. Process Biochem 34:483–491Google Scholar
  10. Al-Asheh S, Duvnjak Z (1995) Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnol Prog 11:638–642Google Scholar
  11. Aloysius R, Karim MIA, Ariff AB (1999) The mechanism of cadmium removal from aqueous solution by nonmetabolizing free and immobilized live biomass of Rhizopus oligosporus. World J Microbiol Biotechnol 15:571–578Google Scholar
  12. Ariff AB, Mel M, Hasan MA, Karim MIA (1999) The kinetics and mechanism of lead (II) biosorption of powderized Rhizopus oligosporus. World J Microbiol Biotechnol 15:291–298Google Scholar
  13. Arika MY, Bayramoglu G, Yilmaz M, Bektaay S, Genas O (2004) Biosorption of Hg2+, Cd2+ and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia troglii. J Hazard Mat 109:191–199Google Scholar
  14. Ashkenazy R, Gottlieb L, Yannai S (1997) Characterization of acetone-washed yeast biomass functional groups incvolved in lead biosorption. Biotechnol Bioeng 55:1–10Google Scholar
  15. Atkinson BW, Bux F, Kasan HC (1998) Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water S Afr 24:129–135Google Scholar
  16. Avery SV, Tobin JM (1992) Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl Environ Microbiol 58:3883–3889Google Scholar
  17. Bai RS, Abraham TE (1998) Studies on biosorption of chromium (VI) by dead fungal biomass. J Sci Indust Res 57:821–824Google Scholar
  18. Bai RS, Abraham TE (2001) Biosorption of Cr(VI) from aqueous solution by Rhizopus nigricans. Bioresour Technol 79:73–81Google Scholar
  19. Bakkaloglu I, Butter TJ, Evinson LM, Holland FS, Hancock IC (1998) Screening of various types biomass for removal and recovery of heavy metals (ZN, Cu, NI) by biosorption, sedimentation and desorption. Water Sci Technol 38:269–277Google Scholar
  20. Bayramoaylu G, Bektaay S, Arica MY (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mat 101:285–300Google Scholar
  21. Baysal Z, Cinar E, Bulut Y, Alkan H, Dogru M (2009) Equilibrium and thermodynamic studies on biosorption of Pb (II) onto Candida albicans biomass. J Hazard Mat 161:62–67Google Scholar
  22. Bellion M, Coubot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microb Lett 254:173–181Google Scholar
  23. Ben Omar N, Larbi Merroun M, Arias Penalver JM, Gonzalez Munoz MT (1997) Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere 35:2277–2283Google Scholar
  24. Bengtsson L, Johansson B, Hackett TJ, McHale L, McHale AP (1995) Studies on the biosorption of uranium by Talaromyces emersonii CBS814.70 biomass. Appl Microbiol Biotechnol 42:807–811Google Scholar
  25. Bhainsa KC, D’Souza SF (1999) Biosorption of uranium(VI) by Aspergillus fumigatus. Biotechnol Tech 13:695–699Google Scholar
  26. Bhainsa KC, D’Souza SF (2009) Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass. J Hazard Mat 165:670–676Google Scholar
  27. Bhainsa KC, D’Souza SF (2008) Removal of copper ions by the filamentous fungus, Rhizopus oryzae from aqueous solution. Bioresour Technol 99:3829–3835Google Scholar
  28. Bishnoi NR, Kumar R, Bishnoi K (2007) Biosorption of Cr(VI) with Trichoderma viride immobilized fungal biomass and cell free Ca-alginate beads. Ind J Exp Biol 45:657–664Google Scholar
  29. Blackwell KJ, Singleton I, Tobin M (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43:579–584Google Scholar
  30. Brady D, Duncan JR (1994a) Cation loss during accumulation of heavy metal cations by Saccharomyces cerevisiae. Biotechnol Lett 16:543–548Google Scholar
  31. Brady D, Duncan JR (1994b) Binding of heavy metals by the cell walls of Saccharomyces cerevisiae. Enzyme Microb Technol 16:633–638Google Scholar
  32. Brady D, Duncan JR (1994c) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41:149–154Google Scholar
  33. Brady D, Rose PD, Duncan JR (1994a) The use of hollow fiber cross-flow microfiltration in bioaccumulation and continuous removal of heavy metals from solution by Saccharomyces cerevisiae. Biotechnol Bioeng 44:1362–1366Google Scholar
  34. Brady D, Stoll AD, Starke L, Duncan JR (1994b) Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyces cerevisiae. Biotechnol Bioeng 44:297–302Google Scholar
  35. Brady JM, Tobin JT, Roux JC (1999) Continuous fixed bed biosorption of Cu2+ ions: application of a simple two parameter mathematical model. J Chem Technol Biotechnol 74:71–77Google Scholar
  36. Breierova E, Vajczikova I, Sasinkova V, Stratilova E, Fisera I, Gregor T, Sajbidor J (2002) Biosorption of cadmium ions by different yeast species. Z Naturforsch C 57:634–639Google Scholar
  37. Bustard M, McHale AP (1997) Biosorption of uranium by cross-linked and alginate immobilized residual biomass from distillery spent wash. Bioprocess Eng 17:127–130Google Scholar
  38. Bustard M, McHale AP (1998) Biosorption of heavy metals by distillery-derived biomass. Bioprocess Eng 19:351–353Google Scholar
  39. Bustard M, Donnellan N, Rollan A, McHale AP (1997) Studies on the biosorption of uranium by a thermotolerant, ethanol-producing strain of Kluyveromyces marxianus. Bioprocess Eng 17:45–50Google Scholar
  40. Bustard M, Rollan A, McHale AP (1998) The effect of pulse voltage and capacitance on biosorption of uranium by biomass derived from whiskey distillery spent wash. Bioprocess Eng 18:59–62Google Scholar
  41. Castro F, Viedma P, Cotoras D (1992) Biomass of Rhizopus oligosporus as an adsorbent for metal ions. Microbiologica 8:94–105Google Scholar
  42. Cervantes C, Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–138Google Scholar
  43. Chen C, Wang J (2007a) Influence of metal ionic characteristics on their biosorption capacity by Sacharomyces cerevisiae. Appl Microbiol Biotechnol 74:911–917Google Scholar
  44. Chen C, Wang J (2007b) Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomed Environ Sci 20:478–482Google Scholar
  45. Chhikara S, Dhankhar R (2008) Biosorption of CR (VI) ions from electroplating industrial effluent using immobilized Aspergillus niger biomass. J Environ Biol 29:773–778Google Scholar
  46. Cho DK, Kim EY (2003) Characteristic of Pb2+ biosorption from aqueous solution by Rhodotorula glutinis. Bioprocess Biosyst Eng 25:271–277Google Scholar
  47. Cihangir N, Saglam N (1999) Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotechnol 19:171–177Google Scholar
  48. Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417Google Scholar
  49. Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723Google Scholar
  50. Delgado A, Anselmo AM, Novais JM (1998) Heavy metal biosorption by dried powdered mycelium of Fusarium flocciferum. Water Environ Res 70:370–375Google Scholar
  51. Deng S, Ting YP (2005) Polyethylenimine-modfied fungal biomass as a high capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms. Environ Sci Technol 39:8490–8496Google Scholar
  52. Dey S, Rao PRN, Bhattacharyya BC, Bandyopadhyay M (1997) Sorption of heavy metals by four basidiomycetous fungi. Bioprocess Eng 12:273–277Google Scholar
  53. Dhami PS, Gopalakrishnan V, Kannan R, Ramanujam A, Salvi N (1998) Biosorption of radionuclides by Rhizopus arrhizus. Biotechnol Lett 20:225–228Google Scholar
  54. Dhawale SS, Lane AC, Dhawale W (1996) Effects of mercury on the white rot fungus Phanerochaete chrysosporium. Bull Environ Contam Toxicol 56:825–832Google Scholar
  55. Donnellan N, Rollan A, McHale L, McHale AP (1995) The effect of electric field stimulation on the biosorption of uranium by non-living biomass derived from Kluyveromyves marxianus IMB3. Biotechnol Lett 17:439–442Google Scholar
  56. Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469Google Scholar
  57. Ertugay N, Bayhan YK (2008) Biosorption of Cr(VI) from aqueous solutions by biomass of Agaricus biporus. J Hazard Mat 154:432–439Google Scholar
  58. Falih AM (1997) Influence of heavy metals toxicity on the growth of Phanerochaete chrysosporium. Bioresour Technol 60:87–90Google Scholar
  59. Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403Google Scholar
  60. Fourest E, Canal C, Roux JC (1994) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev 14:325–332Google Scholar
  61. Gabriel J, Mokrejs M, Bily J, Rychlovsky P (1994) Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiol 39:115–118Google Scholar
  62. Gabriel J, Kovronova O, Rychlovsky P, Krenzelok M (1996a) Accumulation and effect of cadmium in the wood-rotting basidiomycete Daedalea quercina. Bull Environ Toxicol 57:383–390Google Scholar
  63. Gabriel J, Vosahlo J, Baldrian P (1996b) Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnol Tech 10:345–348Google Scholar
  64. Gabriel J, Baldrian P, Rychlovsky P, Krenzelok M (1997) Heavy metal content in wood-decaying fungi collected in Prague and in the national park SUMAVA in the Czech republic. Bull Environ Toxicol 59:595–602Google Scholar
  65. Gadd GM (1993) Tansley Review No. 47 Interactions of fungi with toxic metals. New Phytol 124:25–60Google Scholar
  66. Gadd GM, White C (1993) Microbial treatment of metal pollution-a working biotechnology? Trends Biotechnol 11:353–359Google Scholar
  67. Galli U, Schüepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:364–368Google Scholar
  68. Galli U, Schüepp H, Brunold C (1995) Thiols of Cu-treated maize plants inoculated with the arbuscular-mycorrhizal fungus Glomus intraradices. Physiol Plant 94:247–253Google Scholar
  69. Gomalero E, Lingua G, Berto G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514Google Scholar
  70. Gomes NCM, Linardi VR (1996) Removal of gold silver and copper by living and nonliving fungi from leach liquor obtained from the gold mining industry. Revista de Microbiologia 27:218–222Google Scholar
  71. Gopal M, Pakshirajan K, Swaminathan T (2002) Heavy metal removal by biosorption using Phanerochaete chrysosporium. Appl Biochem Biotechnol 102/103:227–237Google Scholar
  72. Gorovoi LF, Kosyakov VN (1996) Cell wall of fungi:optimal structure for biosorption. Biopolymera i Kletka 12:49–60Google Scholar
  73. Gray SN (1998) Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem Soc Trans 26:666–670Google Scholar
  74. Guibal E, Roulph C, Le Cloirec P (1995) Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ Sci Technol 29:2496–2503Google Scholar
  75. Han R, Li H, Li Y, Zhang J, Xiao H, Shi J (2006) Biosorption of copper and lead ions by waste beer yeast. J Hazard Mat 137:1569–1576Google Scholar
  76. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146Google Scholar
  77. Holan ZR, Volesky B (1995) Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. Appl Biochem Biotechnol 53:133–146Google Scholar
  78. Huang C, Huang CP (1996) Application of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal. Water Res 30:1985–1990Google Scholar
  79. Jentschke G, Marschner P, Vodnik D, Marth C, Bredemeier M, Rapp C, Eberhard F, Gogala N, Godbold DL (1998) Lead uptake by Picea abies seedlings: effects of nitrogen source and mycorrhizas. J Plant Physiol 153:97–104Google Scholar
  80. Junghans K, Straube G (1991) Biosorption of copper by yeasts. Biol Met 4:233–237Google Scholar
  81. Kambe-Honjoh H, Sugarawa A Yoda K, Kitamoto K, Yamasaki M (1997) Isolation and characterization of nickel-accumulating yeasts. Appl Microbiol Biotechnol 48:373–378Google Scholar
  82. Kapoor A, Viaraghavan T (1997) Heavy metal biosorption sites in Aspergillus niger. Bioresour Technol 61:221–227Google Scholar
  83. Kapoor A, Viaraghavan T (1998a) Biosorption of heavy metals of Aspergillus niger: effect on pretreatment. Bioresour Technol 63:109–113Google Scholar
  84. Kapoor A, Viaraghavan T (1998b) Removal of heavy metals from aqueous solutions using immobilized fungal biomass in continuous mode. Water Res 32:1968–1977Google Scholar
  85. Kapoor A, Viaraghavan T (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104Google Scholar
  86. Karna RR, Sajani LS, Mohan PM (1996) Bioaccumulation and biosorption of Co2+ by Neurospora crassa. Biotechnol Lett 18:1205–1208Google Scholar
  87. Korenevskii AA, Khamidova K, Avakyan ZA, Karavaiko GI (1999) Silver biosorption by micromycetes. Microbiology 68:139–145Google Scholar
  88. Koronelli TV, Yuferova SG, Udel´nova TM, Komerova TI (1999) Binding of Cu2+ and Sr2+ by the micromycete Mucor dimorphosporus, a degrader of fatty substances. Prikl Biochem Microbiol 35:342–344Google Scholar
  89. Krantz-Rülcker C, Frändberg E, Schnürer J (1995) Metal loading and enzymatic degradation of fungal cell walls and chitin. Biometals 8:12–18Google Scholar
  90. Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biochem 16:291–300Google Scholar
  91. Krauter P, Martinelli R, Williams K, Martins S (1996) Removal of Cr(VI) from ground water by Saccharomyces cerevisiae. Biodegradation 7:277–286Google Scholar
  92. Krznaric E, Verbruggen N, Wevers JH, Carleer R, Vangronsveld J, Colpaert JV (2009) Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environ Pollut 157:1581–1588Google Scholar
  93. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7:139–153Google Scholar
  94. Li L, Kaplan J (1998) Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273:22181–22187Google Scholar
  95. Li XM, Liao DX, Xu XQ, Yang Q, Zeng GM, Zheng W Guo L (2008) Kinetic studies for the biosorption of lead and copper ions by Penicillium simplicissimum immobilized within a loofa sponge. J Hazard Mat 159:610–615Google Scholar
  96. Li Z, Yuan H (2006) Characterization of cadmium removal by Rhodotorula sp. Y11. Appl Microbiol Biotechnol 73:458–463Google Scholar
  97. Li ZS, Lu YP, Zhen RG, Szcypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar sequestration in Saccharomyces cerevisiae: YCF1-catalysed transport of (bisglutathionato)cadmium. Proc Natl Acad Sci USA 94:42–47Google Scholar
  98. Liang CC, Xiao YP, Liu MJ, Zhang HB, Zhao ZW (2009) Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Int J Phytoremediation 11:692–703Google Scholar
  99. Lilly WW, Wallweber GJ, Lukefahr TA (1992) Cadmium adsorption and its effects on growth and mycelial morphology of the basidiomycete fungus, Schizophyllum commune. Microbios 72:227–237Google Scholar
  100. Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37:4544–4552Google Scholar
  101. Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289Google Scholar
  102. Lu Y, Wilkins E (1996) Heavy metal removal by caustic-treated yeast immobilized in alginate. J Hazard Mat 49:165–179Google Scholar
  103. Luef E, Prey T, Kubicek CP (1991) Biosorption of zinc by fungal mycelial wastes. Appl Microbiol Biotechnol 34:688–692Google Scholar
  104. Madrid Y, Camara C (1997) Biological substrates for metal preconcentration and speciation. Trends Anal Chem 16:36–44Google Scholar
  105. Magyarosy A, Laidlaw RD, Kilaas R, Echer C, Clark DS, Keasling JD (2002) Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl Microbiol Biotechnol 59:382–388Google Scholar
  106. Matis KA, Zouboulis AI, Grigoriadou AA, Lazaridis NK, Ekateriniadou AA (1996) Metal biosorption–flotation. Application to cadmium removal. Appl Microbiol Biotechnol 45:569–573Google Scholar
  107. Melgar MJ, Alonso J, Garcia MA (2007) Removal of toxic metals by fungal biomass of Agaricus macrosporus. Sci Total Environ 385:12–19Google Scholar
  108. Mendil D, Tuzen M, Soylak M (2008) A biosorption system for metal ions on Penicillium italicum-loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations. J Hazard Mat 152:1171–1178Google Scholar
  109. Merrin JS, Sheela R, Saswathi N, Prakasham RS (1998) Biosorption of chromium VI using Rhizopus arrhizus. Ind J Exp Biol 36:1052–1055Google Scholar
  110. Meyer A, Wallis FM (1997) The use of Aspergillus niger (strain 4) biomass for lead uptake from aqueous systems. Water SA 23:187–192Google Scholar
  111. Michelot D, Siobud E, Dore JC, Viel C Poirier F (1998) Update on metal content profiles in mushrooms–toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon 36:1997–2012Google Scholar
  112. Mogollon L, Rodriguez R, Larrota W, Ramirez N, Torres R (1998) Biosorption of nickel using filamentous fungi. Appl Biochem Biotechnol 70/72:593–601Google Scholar
  113. Mukhopadhyay M, Noronha SB, Suraishkumar GK (2007) Kinetic modelling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresour Technol 98:1781–1787Google Scholar
  114. Mullen MD, Wolf DC, Beveridge TJ, Bailey GW (1992) Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii. Soil Biol Biochem 24:129–135Google Scholar
  115. Muraledharand TR, Iyengar L, Venkobachar C (1995) Screening of tropical wood-rotting mushrooms for copper biosorption. Appl Environ Microbiol 61:3507–3508Google Scholar
  116. Murugesan GS, Sathishkumar M, Swaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresour Technol 97:483–487Google Scholar
  117. Naja G, Mustin C, Berthelin J, Volesky B (2005) Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. J Colloid Interface Sci 292:537–543Google Scholar
  118. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750Google Scholar
  119. Niu H, Xu XS, Wang JH (1993) Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol Bioeng 42:785–787Google Scholar
  120. Omar NB, Merroun ML, Gonzalez-Munoz MT, Arias JM (1996) Brewery yeast as a biosorbent for uranium. J Appl Bacteriol 81:283–287Google Scholar
  121. Ono BI, Ohue H, Ishihara F (1988) Role of cell wall in Saccharomyces cerevisiae mutants resistant to Hg2+. J Bacteriol 170:5877–5882Google Scholar
  122. Ozer A, Ozer D (2003) Comparative study of the biosorption of Pb(II), Ni(II), and Cr(VI) ions onto S. cerevisiae: determination of biosorpion heats. J Hazard Mat 100:219–229Google Scholar
  123. Ozsoy HD, Kumbur H, Saha B, van Leeuwen JH (2008) Use of Rhizopus oligosporus produced from food processing wastewater as a biosorbent for Cu(II) ions removal from the aqueous solutions. Bioresour Technol 99:4943–4948Google Scholar
  124. Pakshirajan K, Swaminathan T (2009) Biosorption of copper and cadmium in packed bed colums with live immobilized fungal biomass of Phanerochaete chrysoporium. Appl Biochem Biotechnol 157:159–173Google Scholar
  125. Parvathi K, Nareshkumar R, Nagendran R (2007) Manganese biosorption sites of Saccharomyces cerevisiae. Environ Technol 28:779–784Google Scholar
  126. Pena MMO, Koch KA, Thiele DJ (1998) Dynamic regulation of copper uotake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18:2514–2523Google Scholar
  127. Perez-Corona T, Madrid Y, Camara C (1997) Evaluation of selective uptake of selenium (Se(IV) and Se(VI)) and antimony (Sb(III) and Sb(V)) species by baker´s yeast cells (Saccharomyces cerevisiae). Anal Chim Acta 345:249–255Google Scholar
  128. Pethkar AV, Kulkarni SK, Paknikar KM (2001) Comparative studies on metal biosorption by two strains of Cladsporium cladosporioides. Bioresour Technol 80:211–215Google Scholar
  129. Pillichshammer M, Pümpel T, Pöder R, Eller K, Klima J, Schinner F (1995) Biosorption of chromium to fungi. BioMetals 8:117–121Google Scholar
  130. Plaza G, Lukasik W, Ulfig K (1996) Sorption of cadmium by filamentous soil fungi. Acta Microbiol Pol 45:193–201Google Scholar
  131. Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromiumVI by free and immobilized Rhizopus arrhizus. Environ Pollut 104:421–427Google Scholar
  132. Prigione V, Zerlottin M, Refosco D, Tigini V, Anastasi A, Varese GC (2009) Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresour Technol 100:2770–2776Google Scholar
  133. Puranik PR, Paknikar KM (1997) Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass. J Biotechnol 55:113–124Google Scholar
  134. Rama Rao VSKV, Wilson CH, MOhan PM (1997) Zinc resistance in Neurospora crassa. BioMetals 10:147–156Google Scholar
  135. Redon PO, Beguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago trunculata growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195Google Scholar
  136. Ricken B, Hoefner W (1996) Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L. ) and oat (Avena sativa L.) on a sewage-sludge treated soil. Z Pflanzener Bodenk 159:189–194Google Scholar
  137. Rivvera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185Google Scholar
  138. Rizzo DM, Blanchette RA, Palmer MA (1992) Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot 70:1515–1520Google Scholar
  139. Riordan C, McHale AP (1998) Removal of lead from solution using non-living residual brewery yeast. Bioprocess Eng 19:277–280Google Scholar
  140. Riordan C, Bustard M, Putt R, McHale AP (1997) Removal of uranium from solution using residual brewery yeast: Combined biosorption and precipitation. Biotechnol Lett 19:385–387Google Scholar
  141. Sag Y, Kaya A, Kutsal T (1998a) The simultaneuos biosorption of Cu(II) and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy 50:297–314Google Scholar
  142. Sag Y, Acikel U, Akzu Z, Kutsal T (1998b) Competitive biosorption of chromium(VI), iron(III) and copper(II) ions from binary metal mixtures by R. arrhizus and C. vulgaris. Turk J Eng Environ Sci 22:145–154Google Scholar
  143. Saglam N, Say R, Denizli A, Patir S, Arica MY (1999) Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochem 34:725–730Google Scholar
  144. Sajani LS, Mohan PM (1997) Characterisation of a cobalt-resistant mutant of Neurospora crassa with transport block. BioMetals 10:175–184Google Scholar
  145. Sajani LS, Mohan PM (1998) Cobalt resistance in Neurospora crassa: Overproduction of a cobaltprotein in a resistant strain. BioMetals 11:33–40Google Scholar
  146. Sanna G, Maddau L, Franceschini A, Melis P (1997) Bioaccumulation and biosorption of heavy metals by Trichoderman viride. Micol Ital 26:63–72Google Scholar
  147. Sari A, Tuzen M (2009) Biosorption of AS(III) and As(VI) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies. J Hazard Mat 164:1372–1378Google Scholar
  148. Sarret G, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Berard L, Menthonnex JJ (1999) Structural determination of Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy and solution chemistry. J Synchroton Radiat 6:414–416Google Scholar
  149. Satufoka H, Amano S, Atomi H, Takagi M, Hirata K, Miyamoto K, Imanaka T (1999) Rapid method for detection and detoxification of heavy metal ions in water environments using phytochelatin. J Biosci Bioeng 88:287–292Google Scholar
  150. Say R, Denizli A, Arica MY (2001) Biosorption of cadmium(II), lead(II) and coper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76:67–70Google Scholar
  151. Sayer JA, Kierans M, Gadd GM (1997) Solubilisation of some naturally occuring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiol Lett 154:29–35Google Scholar
  152. Seki H, Suzuki A, Maruyama H (2005) Biosorption of chromium(VI) and arsenic(V) onto methylated yeast biomass. J Colloid Interface Sci 281:261–266Google Scholar
  153. Shetty KG, Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollut 86:181–188Google Scholar
  154. Simmons P, Singleton I (1996) A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 45:278–285Google Scholar
  155. Simmons P, Tobin JM, Singleton I (1995) Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents. J Indust Microbiol 14:240–246Google Scholar
  156. Sing C, Yu J (1998) Copper adsorption and removal from water by living mycelium of white-rot fungus Phanerochaete chrysosporium. Water Res 32:2746–2752Google Scholar
  157. Stoll A, Duncan JR Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial waste water. Environ Pollut 97:247–251Google Scholar
  158. Suh JH, Yun JW, Kim DS (1999a) Effect of pH on pB2+ accumulation in Saccharomyces cerevisiae and Aureobasidium pullulans. Bioprocess Eng 20:471–474Google Scholar
  159. Suh JH, Yun JW, Kim DS (1999b) Effect of extracellular polymeric substances (EPS) on Pb2+ accumulation by Aureobasidium pullulans. Bioprocess Eng 21:1–4Google Scholar
  160. Tam PCF (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5:181–187Google Scholar
  161. Tobin JM, Roux JC (1998) Mucor biosorbent for chromium removal from tanning effluent. Water Res 32:1407–1416Google Scholar
  162. Tsekova K, Ianis M, Dencheva V, Ganeva S (2007) Biosorption of binary mixtures of copper and cobalt by Penicilium brevicompactum. Z Naturforsch C62:261–264Google Scholar
  163. Tsezos M, Georgousis Z, Remoudaki E (1997) Mechanism of aluminium interference on uranium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 55:16–27Google Scholar
  164. Tunali S, Akar T (2006) Zn(II) biosorption properties of Botrytis cinera biomass. J Hazard Mat 131:137–145Google Scholar
  165. Vieira RH, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24Google Scholar
  166. Volesky B (1990) Biosorption by fungal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton, pp 139–172Google Scholar
  167. Volesky B (1994) Advances in biosorption of metals: Selection of biomass types. FEMS Microbiol Rev 14:291–302Google Scholar
  168. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250Google Scholar
  169. Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:797–806Google Scholar
  170. Volesky B, May H, Holan ZR (1992) Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol Bioeng 41:826–829Google Scholar
  171. Wales DS, Sagar BF (1990) Recovery of metal ions by microfungal filters. J Chem Technol Biotechnol 49:345–355Google Scholar
  172. Wang J, Chen C (2006) Biosorption of heavy metals by Sacharomyces cerevisiae: a review. Biotechnol Adv 24:427–451Google Scholar
  173. Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley SM (1994) Cadmium tolerance mediated by the yeast AP1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269:32592–32597Google Scholar
  174. White C, Gadd GM (1990) Biosorption of radionuclides by fungal biomass. J Chem Technol Biotechnol 49:331–343Google Scholar
  175. Whiteside SG, Plocke D (1992) Selection and characterisation of a copper-resistant subpopulation of Schizosaccharomyces pombe. J Gen Microbiol 138:2417–2423Google Scholar
  176. Wilhelmi BS, Duncan JR (1995) Metal recovery from Saccharomyces cerevisiae biosorption columns. Biotechnol Lett 17:1007–1012Google Scholar
  177. Winge DR, Jensen LT, Srinivasan C (1998) Metal-ion regulation of gene expression in yeast. Curr Opin Chem Biol 2:216–221Google Scholar
  178. Wunderlich C, Zhao Q, Zimmermann M, Wolf K (1995) Physiological characterization of a cadmium resistant mutant in the fission yeast Schizosaccharomyces pombe. Microbiol Res 150:233–237Google Scholar
  179. Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496Google Scholar
  180. Yazgan A, Özcengiz G (1994) Subcellular distribution of accumulated heavy metals in Saccharomyces cerevisiae and Kluyveromyces marxianus. Biotechnol Lett 16:871–874Google Scholar
  181. Yetis U, Özcengiz G, Dilek FB, Ergen N, Dolek A (1998) Heavy metal biosorption by white-rot fungi. Water Sci Technol 38:323–330Google Scholar
  182. Yin H, He B, Peng H, Ye J, Yang F, Zhang N (2008) Removal of Cr(VI) and Ni(II) from aqeous solutions by fused yeast: study of cations release and biosorption mechanism. J Hazard Mat 158:568–576Google Scholar
  183. Yin PH, Yu QM, Jin B, Ling Z (1999) Biosorption removal of cadmium from aquous solution by using pretreated fungal biomass cultured from starch wastewater. Water Res 33:1960–1963Google Scholar
  184. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561Google Scholar
  185. Zhao M, Duncan JR (1997) Use of formaldehyde crosslinked Saccharomyces cerevisiae in column bioreactors for removal of metals from aqueous solutions. Biotechnol Lett 19:953–955Google Scholar
  186. Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51:686–693Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut für Biologie IV (Mikrobiologie)Rheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations