Fungi and Their Enzymes for Pitch Control in the Pulp and Paper Industry

  • Ana Gutiérrez
  • José C. del Río
  • Ángel T. Martínez
Part of the The Mycota book series (MYCOTA, volume 10)


Pitch biocontrol was the first example where microbial biotechnology provided successful solutions to the pulp and paper sector. Triglycerides cause deposits in mechanical pulping, and both microbial and enzymatic products have been commercialized to be applied on wood and pulp, respectively. The former are based on colorless strains of sapstain fungi, and the latter are improved lipases. However, lipases are not useful when pitch originates from other lipids, such as steroids and terpenes, and the sapstain inocula are also only partially effective. In the search for stronger biocatalysts to degrade recalcitrant lipids, the potential of white-rot fungi and their enzymes has been demonstrated. When inocula of these fungi are used, wood treatment must be controlled to avoid cellulose degradation. However, the selectivity of the laccase-mediator system permits its integration as an additional bleaching stage providing a double benefit: pitch biocontrol and removal of residual lignin in chlorine-free pulp bleaching.


Wood Chip Resin Acid Sterol Ester Free Sterol Abietic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Kim Borch (Novozymes, Bagsvaerd, Denmark) for information on the molecular structure of commercial lipase and its thermal stabilization, Roberta Farrell (Waikato University, Hamilton, New Zealand) for images of wild and albino Ophiostoma piliferum strains, María Jesús Ortega (Soria, Spain) for the wood resin image, and Javier Romero (ENCE, Pontevedra, Spain) for the illustration of pitch deposits. This work was supported by the Spanish projects AGL2008-00709 and BIO2008-01533 and by the BIORENEW project of the European Union (contract NMP2-CT-2006-026456).


  1. Akhtar M, Scott GM, Swaney RE, Shipley DF (2000) Biomechanical pulping: a mill-scale evaluation. Resour Conserv Recycl 28:241–252CrossRefGoogle Scholar
  2. Allen LH (2000a) Pitch control in paper mills. In: Back EL, Allen LH (eds) Pitch control, wood resin and deresination. TAPPI, Atlanta, pp 307–328Google Scholar
  3. Allen LH (2000b) Pitch control in pulp mills. In: Back EL, Allen LH (eds) Pitch control, wood resin and deresination. TAPPI, Atlanta, pp 265–288Google Scholar
  4. Back EL, Allen LH (2000) Pitch control, wood resin and deresination. TAPPI, AtlantaGoogle Scholar
  5. Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Progr 15:147–157CrossRefGoogle Scholar
  6. Bajpai P, Bajpai PK, Akhtar M, Jauhari MB (2001) Biokraft pulping of eucalyptus with selected lignin-degrading fungi. J Pulp Paper Sci 27:235–239Google Scholar
  7. Bajpai P, Anand A, Bajpai PK (2006) Bleaching with lignin-oxidizing enzymes. Biotechnol Annu Rev 12:349–378CrossRefGoogle Scholar
  8. Bergelin E, Holmbom B (2003) Deresination of birch kraft pulp in bleaching. J Pulp Paper Sci 29:29–34Google Scholar
  9. Bergelin E, Moller R, Holmbom B (2005) Analysis of pitch and deposit samples in kraft pulp production. Pap Puu Pap Tim 87:399–403Google Scholar
  10. Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73:S999–S1010CrossRefGoogle Scholar
  11. Borch K, Franks N, Lund H, Xu H, Luo J (2003) Oxidizing enzymes in the manufacturing of paper materials. Patent US 2003-0124710 A1Google Scholar
  12. Bornscheuer U, Bessler C, Srinivas R, Hari KS (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437CrossRefGoogle Scholar
  13. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102CrossRefGoogle Scholar
  14. Bourbonnais R, Paice MG (1996) Enzymatic delignification of kraft pulp using laccase and a mediator. Tappi J 79:199–204Google Scholar
  15. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682CrossRefGoogle Scholar
  16. Breuil C, Iverson S, Gao Y (1998) Fungal treatment of wood chips to remove extractives. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. TAPPI, Atlanta, pp 541–566Google Scholar
  17. Brush T, Farrell RL, Ho C (1994) Biodegradation of wood extractives from Southern and Yellow pine by Ophiostoma piliferum. Tappi J 77:155–159Google Scholar
  18. Buchert J, Mustranta A, Tamminen T, Spetz P, Holmbom B (2002) Modification of spruce lignans with Trametes hirsuta laccase. Holzforschung 56:579–584CrossRefGoogle Scholar
  19. Burnes TA, Blanchette RA, Farrell RL (2000) Bacterial biodegradation of extractives and patterns of bordered pit membrane attack in pine wood. Appl Environ Microbiol 66:5201–5205CrossRefGoogle Scholar
  20. Calero-Rueda O, Plou FJ, Ballesteros A, Martínez AT, Martínez MJ (2002) Production, isolation and characterization of a sterol esterase from Ophiostoma piceae. BBA Proteins Proteomics 1599:28–35CrossRefGoogle Scholar
  21. Calero-Rueda O, Gutiérrez A, del Río JC, Prieto A, Plou FJ, Ballesteros A, Martínez AT, Martínez MJ (2004) Hydrolysis of sterol esters by an esterase from Ophiostoma piceae: Application for pitch control in pulping of Eucalyptus globulus wood. Int J Biotechnol 6:367–375CrossRefGoogle Scholar
  22. Calero-Rueda O, Barba V, Rodríguez E, Plou F, Martínez AT, Martínez MJ (2009) Study of a sterol esterase secreted by Ophiostoma piceae: Sequence, model and biochemical properties. Biochim Biophys Acta 1794:1099–1106CrossRefGoogle Scholar
  23. Call H-P (1994) Verfahren zur Veränderung, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen. Patent WO 94/29510Google Scholar
  24. Camarero S, García O, Vidal T, Colom J, del Río JC, Gutiérrez A, Gras JM, Monje R, Martínez MJ, Martínez AT (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35:113–120CrossRefGoogle Scholar
  25. Camarero S, Ibarra D, Martínez AT, Romero J, Gutiérrez A, del Río JC (2007) Paper pulp delignification using laccase and natural mediators. Enzyme Microb Technol 40:1264–1271CrossRefGoogle Scholar
  26. Chen S, Lin Y, Zhang Y, Wang XH, Yang JL (2001) Enzymatic pitch control at nanping paper mill. Tappi J 84:44–47Google Scholar
  27. Chen T, Wang Z, Gao Y, Breuil C, Hatton JV (1994) Wood extractives and pitch problems: Analysis and partial removal by biological treatment. Appita 47:463–466Google Scholar
  28. Chen T, Wang Z, Zhou Y, Breuil C, Aschim OK, Yee E, Nadeau L (1995) Using solid-phase extraction to assess why aspen causes more pitch problems than softwoods in kraft pulping. Tappi J 78:143–149Google Scholar
  29. del Río JC, Gutiérrez A (2006) Chemical composition of abaca (Musa textilis) leaf fibers used for manufacturing of high quality paper pulps. J Agric Food Chem 54:4600–4610CrossRefGoogle Scholar
  30. del Río JC, Gutiérrez A, González-Vila FJ, Martín F, Romero J (1998) Characterization of organic deposits produced in the Kraft pulping of Eucalyptus globulus wood. J Chromatogr 823:457–465CrossRefGoogle Scholar
  31. del Río JC, Gutiérrez A, González-Vila FJ (1999) Analysis of impurities occurring in a totally-chlorine free-bleached Kraft pulp. J Chromatogr 830:227–232CrossRefGoogle Scholar
  32. del Río JC, Romero J, Gutiérrez A (2000) Analysis of pitch deposits produced in Kraft pulp mills using a totally chlorine free bleaching sequence. J Chromatogr A 874:235–245CrossRefGoogle Scholar
  33. Dorado J, Claassen FW, Lenon G, van Beek TA, Wijnberg JBPA, Sierra-Alvarez R (2000a) Degradation and detoxification of softwood extractives by sapstain fungi. Bioresour Technol 71:13–20CrossRefGoogle Scholar
  34. Dorado J, Claassen FW, van Beek TA, Lenon G, Wijnberg JBPA, Sierra-Alvarez R (2000b) Elimination and detoxification of softwood extractives by white-rot fungi. J Biotechnol 80:231–240CrossRefGoogle Scholar
  35. Dorado J, van Beek TA, Claassen FW, Sierra-Alvarez R (2001) Degradation of lipophilic wood extractive constituents in Pinus sylvestris by the white-rot fungi Bjerkandera sp. and Trametes versicolor. Wood Sci Technol 35:117–125CrossRefGoogle Scholar
  36. Dubé E, Shareck F, Hurtubise Y, Beauregard M, Daneault C (2008) Enzyme-based approaches for pitch control in thermomechanical pulping of softwood and pitch removal in process water. J Chem Technol Biotechnol 83:1261–1266CrossRefGoogle Scholar
  37. Eberhardt TL, Han JS, Micales JA, Young RA (1994) Decay resistance in conifer seed cones – role of resin acids as inhibitors of decomposition by white-rot fungi. Holzforschung 48:278–284CrossRefGoogle Scholar
  38. Eggert C, Temp U, Dean JFD, Eriksson K-EL (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148CrossRefGoogle Scholar
  39. Ekman R (2000) Resin during storage and its biological treatment. In: Back EL, Allen LH (eds) Pitch control, wood resin and deresination. Tappi, Atlanta, pp 185–204Google Scholar
  40. Ekman R, Holmbom B (2000) The chemistry of wood resin. In: Back EL, Allen LH (eds) Pitch control, wood resin and deresination. TAPPI, Atlanta, pp 37–76Google Scholar
  41. Farrell RL (2007) Cartapip/SylvanexTM: Ophiostoma fungal product for commercial pulp and paper and solid wood applications. Proc Int Congr Biotechnol Pulp Pap Indust 10:63–64Google Scholar
  42. Farrell RL, Blanchette RA, Brush TS, Hadar Y, Iverson S, Krisa K, Wendler PA, Zimmerman W (1993) CartapipTM: a biopulping product for control of pitch and resin acid problems in pulp mills. J Biotechnol 30:115–122CrossRefGoogle Scholar
  43. Farrell RL, Hata K, Wall MB (1997) Solving pitch problems in pulp and paper processes by the use of enzymes and fungi. Adv Biochem Eng Biotechnol 57:197–212Google Scholar
  44. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. De Gruyter, BerlinGoogle Scholar
  45. Fischer K, Messner K (1992a) Adsorption of lipase on pulp fibers during biological pitch control in paper industry. Enzyme Microb Technol 14:470–473CrossRefGoogle Scholar
  46. Fischer K, Messner K (1992b) Biological pitch reduction of sulfite pulp on pilot scale. In: Kuwahara M, Shimada M (eds) Biotechnology in the pulp and paper industry. UNI, Kyoto, pp 169–174Google Scholar
  47. Fischer K, Puchinger L, Schloffer K (1993) Enzymatic pitch control of sulfite pulp on pilot scale. J Biotechnol 27:341–348CrossRefGoogle Scholar
  48. Freire CSR, Silvestre AJD, Neto CP (2002) Identification of new hydroxy fatty acids and ferulic acid esters in the wood of Eucalyptus globulus. Holzforschung 56:143–149CrossRefGoogle Scholar
  49. Freire CSR, Silvestre AJD, Neto CP (2005) Lipophilic extractives in Eucalyptus globulus kraft pulps. Behavior during ECF bleaching. J Wood Chem Technol 25:67–80CrossRefGoogle Scholar
  50. Freire CSR, Silvestre AJD, Neto CP, Evtuguin DV (2006) Effect of oxygen, ozone and hydrogen peroxide bleaching stages on the contents and composition of extractives of Eucalyptus globulus kraft pulps. Bioresour Technol 97:420–428CrossRefGoogle Scholar
  51. Fujita Y, Awaji H, Matsukura M, Hata K (1991) Enzymic pitch control in papermaking process. Kami Pa Gikyoshi 45:905–921Google Scholar
  52. Fujita Y, Awaji H, Taneda H, Matsukura M, Hata K, Shimoto H, Sharyo M, Sakaguchi H, Gibson K (1992) Recent advances in enzymic pitch control. Tappi J 75:117–122Google Scholar
  53. Gao Y, Breuil C (1998) Properties and substrate specificities of an extracellular lipase purified from Ophiostoma piceae. World J Microbiol Biotechnol 14:421–429CrossRefGoogle Scholar
  54. Gutiérrez A, del Río JC (2001) Gas chromatography-mass spectrometry demonstration of steryl glycosides in eucalypt wood, kraft pulp and process liquids. Rapid Commun Mass Spectrom 15:2515–2520CrossRefGoogle Scholar
  55. Gutiérrez A, del Río JC (2003a) Lipids from flax fibers and their fate in alkaline pulping. J Agric Food Chem 51:4965–4971CrossRefGoogle Scholar
  56. Gutiérrez A, del Río JC (2003b) Lipids from flax fibers and their fate in alkaline pulping (vol 51, pg 4965, 2003). J Agric Food Chem 51:6911–6914CrossRefGoogle Scholar
  57. Gutiérrez A, del Río JC (2005) Chemical characterization of pitch deposits produced in the manufacturing of high-quality paper pulps from hemp fibers. Bioresour Technol 96:1445–1450CrossRefGoogle Scholar
  58. Gutiérrez A, Caramelo L, Prieto A, Martínez MJ, Martínez AT (1994) Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi from the genus Pleurotus. Appl Environ Microbiol 60:1783–1788Google Scholar
  59. Gutiérrez A, del Río JC, González-Vila FJ, Romero J (1998) Variation in the composition of wood extractives from Eucalyptus globulus during seasoning. J Wood Chem Technol 18:439–446CrossRefGoogle Scholar
  60. Gutiérrez A, del Río JC, González-Vila FJ, Martín F (1999a) Chemical composition of lipophilic extractives from Eucalyptus globulus Labill. wood. Holzforschung 53:481–486CrossRefGoogle Scholar
  61. Gutiérrez A, del Río JC, Martínez MJ, Martínez AT (1999b) Fungal degradation of lipophilic extractives in Eucalyptus globulus wood. Appl Environ Microbiol 65:1367–1371Google Scholar
  62. Gutiérrez A, Martínez MJ, del Río JC, Romero J, Canaval J, Lenon G, Martínez AT (2000) Fungal pretreatment of Eucalyptus wood can strongly decreases the amount of lipophilic extractives during chlorine-free kraft pulping. Environ Sci Technol 34:3705–3709CrossRefGoogle Scholar
  63. Gutiérrez A, del Río JC, Martínez MJ, Martínez AT (2001a) The biotechnological control of pitch in paper pulp manufacturing. Trends Biotechnol 19:340–348CrossRefGoogle Scholar
  64. Gutiérrez A, Romero J, del Río JC (2001b) Lipophilic extractives from Eucalyptus globulus pulp during kraft cooking followed by TCF and ECF bleaching. Holzforschung 55:260–264CrossRefGoogle Scholar
  65. Gutiérrez A, Romero J, del Río JC (2001c) Lipophilic extractives in process waters during manufacturing of totally chlorine free kraft pulp from eucalypt wood. Chemosphere 44:1237–1242CrossRefGoogle Scholar
  66. Gutiérrez A, Rodríguez IM, del Río JC (2004) Chemical characterization of lignin and lipid fractions in kenaf bast fibers used for manufacturing high-quality papers. J Agric Food Chem 52:4764–4773CrossRefGoogle Scholar
  67. Gutiérrez A, del Río JC, Ibarra D, Rencoret J, Romero J, Speranza M, Camarero S, Martínez MJ, Martínez AT (2006a) Enzymatic removal of free and conjugated sterols forming pitch deposits in environmentally sound bleaching of eucalypt paper pulp. Environ Sci Technol 40:3416–3422CrossRefGoogle Scholar
  68. Gutiérrez A, del Río JC, Rencoret J, Ibarra D, Martínez AT (2006b) Main lipophilic extractives in different paper pulp types can be removed using the laccase-mediator system. Appl Microbiol Biotechnol 72:845–851CrossRefGoogle Scholar
  69. Gutiérrez A, Rodríguez IM, del Río JC (2006c) Chemical characterization of lignin and lipid fractions in industrial hemp bast fibers used for manufacturing high-quality paper pulps. J Agric Food Chem 54:2138–2144CrossRefGoogle Scholar
  70. Gutiérrez A, Rencoret J, Ibarra D, Molina S, Camarero S, Romero J, del Río JC, Martínez AT (2007) Removal of lipophilic extractives from paper pulp by laccase and lignin-derived phenols as natural mediators. Environ Sci Technol 41:4124–4129CrossRefGoogle Scholar
  71. Gutiérrez A, del Río JC, Rencoret J, Ibarra D, Speranza AM, Camarero S, Martínez MJ, Martínez AT (2008a) Mediator-enzyme system for controlling pitch deposits in pulp and paper production. US Patent 10080210393, European Patent EP 1 908 876 A1Google Scholar
  72. Gutiérrez A, Rodríguez IM, del Río JC (2008b) Chemical composition of lipophilic extractives from sisal (Agave sisalana) fibers. Ind Crops Prod 28:81–87CrossRefGoogle Scholar
  73. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251CrossRefGoogle Scholar
  74. Hata K, Matsukura M, Taneda H, Fujita Y (1996) Mill-scale application of enzymatic pitch control during paper production. In: Viikari L, Jeffries TW (eds) Enzymes for pulp and paper processing. ACS, Washington, pp 280–296CrossRefGoogle Scholar
  75. Hata K, Matsukura M, Fujita Y, Toyota K, Taneda H (1998) Biodegradation of resin acids in pulp and paper industry: application of microorganisms and their enzymes. ACS Sym Ser 687:27–40CrossRefGoogle Scholar
  76. Held BW, Thwaites JM, Farrell RL, Blanchette RA (2003) Albino strains of Ophiostoma species for biological control of sapstaining fungi. Holzforschung 57:237–242CrossRefGoogle Scholar
  77. Ibarra D, Chávez MI, Rencoret J, del Río JC, Gutiérrez A, Romero J, Camarero S, Martínez MJ, Jimenez-Barbero J, Martínez AT (2007) Structural modification of eucalypt pulp lignin in a totally chlorine free bleaching sequence including a laccase-mediator stage. Holzforschung 61:634–646CrossRefGoogle Scholar
  78. Jansson MB, Wormald P, Dahlman O (1995) Reactions of wood extractives during ECF and TCF bleaching of kraft pulp. Pulp Paper Can 96:T134–T137Google Scholar
  79. Josefsson P, Nilsson F, Sundstrom L, Norberg C, Lie E, Jansson MB, Henriksson G (2006) Controlled seasoning of Scots pine chips using an albino strain of Ophiostoma. Indust Eng Chem 45:2374–2380CrossRefGoogle Scholar
  80. Kallioinen A, Vaari A, Ratto M, Konn J, Siikaaho M, Viikari L (2003) Effects of bacterial treatments on wood extractives. J Biotechnol 103:67–76CrossRefGoogle Scholar
  81. Karlsson S, Holmbom B, Spetz P, Mustranta A, Buchert J (2001) Reactivity of Trametes laccases with fatty and resin acids. Appl Microbiol Biotechnol 55:317–320CrossRefGoogle Scholar
  82. Kontkanen H, Tenkanen M, Fagerstrom R, Reinikainen T (2004) Characterisation of steryl esterase activities in commercial lipase preparations. J Biotechnol 108:51–59CrossRefGoogle Scholar
  83. Kontkanen H, Reinikainen T, Saloheimo M (2006a) Cloning and expression of a Melanocarpus albomyces steryl esterase gene in Pichia pastoris and Trichoderma reesei. Biotechnol Bioeng 94:407–415CrossRefGoogle Scholar
  84. Kontkanen H, Saloheimo M, Pere J, Miettinen-Oinonen A, Reinikainen T (2006b) Characterization of Melanocarpus albomyces steryl esterase produced in Trichoderma reesei and modification of fibre products with the enzyme. Appl Microbiol Biotechnol 72:696–704CrossRefGoogle Scholar
  85. Kontkanen H, Tenkanen M, Reinikainen T (2006c) Purification and characterisation of a novel steryl esterase from Melanocarpus albomyces. Enzyme Microb Technol 39:265–273CrossRefGoogle Scholar
  86. Leach JM, Thakore AN (1976) Toxic constituents in mechanical pulping effluents. Tappi 59:129–132Google Scholar
  87. Liss SN, Bicho PA, Saddler JN (1997) Microbiology and biodegradation of resin acids in pulp mill effluents: a minireview. Can J Microbiol 43:599–611CrossRefGoogle Scholar
  88. Marsheck WJ, Kraychy S, Muir RD (1972) Microbial degradation of sterols. Appl Microbiol 23:72–77Google Scholar
  89. Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: Microbiological, chemical and enzymatic aspects of fungal attack to lignin. Intern Microbiol 8:195–204Google Scholar
  90. Martínez MJ, Barrasa JM, Gutiérrez A, del Río JC, Martínez AT (1999) Fungal screening for biological removal of extractives from Eucalyptus globulus Labill. wood. Can J Bot 77:1513–1522CrossRefGoogle Scholar
  91. Martínez-Íñigo MJ, Immerzeel P, Gutiérrez A, del Río JC, Sierra-Alvarez R (1999) Biodegradability of extractives in sapwood and heartwood from Scots pine by sapstain and white-rot fungi. Holzforschung 53:247–252CrossRefGoogle Scholar
  92. Martínez-Íñigo MJ, Gutiérrez A, del Río JC, Martínez MJ, Martínez AT (2000) Time course of fungal removal of lipophilic extractives from Eucalyptus globulus Labill. wood. J Biotechnol 84:119–126CrossRefGoogle Scholar
  93. Matsukura M, Fujita Y, Sakaguchi H (1990) On the use of ResinaseTM A for pitch control. Novo Publ A 6122:1–7Google Scholar
  94. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565CrossRefGoogle Scholar
  95. Molina S, Rencoret J, del Río JC, Lomascolo A, Record E, Martínez AT, Gutiérrez A (2008) Oxidative degradation of model lipids representative for main paper pulp lipophilic extractives by the laccase-mediator system. Appl Microbiol Biotechnol 80:211–222CrossRefGoogle Scholar
  96. Morin C, Tanguay P, Breuil C, Yang DQ, Bernier L (2006) Bioprotection of spruce logs against sapstain using an albino strain of Ceratocystis resinifera. Phytopathology 96:526–533CrossRefGoogle Scholar
  97. Morrison WHI, Akin DE (2001) Chemical composition of components comprising bast tissue in flax. J Agric Food Chem 49:2333–2338CrossRefGoogle Scholar
  98. Nguyen D, Zhang X, Paice MG, Tsang A, Renaud S (2007) Microplate enzyme assay for screening lipoxygenases to degrade wood extractives. Biocatal Biotransform 25:202–210CrossRefGoogle Scholar
  99. Paice MG, Bourbonnais R, Reid ID, Archibald FS, Jurasek L (1995) Oxidative bleaching enzymes: a review. J Pulp Paper Sci 21:J280–J284Google Scholar
  100. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169CrossRefGoogle Scholar
  101. Poppius-Levlin K, Wang W, Tamminen T, Hortling B, Viikari L, Niku-Paavola M-L (1999) Effects of laccase/HBT treatment on pulp and lignin structures. J Pulp Paper Sci 25:90–94Google Scholar
  102. Qin M, Hannuksela T, Holmbom B (2003) Physico-chemical characterization of TMP resin and related model mixtures. Colloid Surf A 221:243–254CrossRefGoogle Scholar
  103. Qin M, Hannuksela T, Holmbom B (2004) Deposition tendency of TMP resin and related model mixtures. J Pulp Paper Sci 30:279–283Google Scholar
  104. Rencoret J, Gutiérrez A, del Río JC (2007) Lipid and lignin composition of woods from different eucalypt species. Holzforschung 61:165–174CrossRefGoogle Scholar
  105. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226CrossRefGoogle Scholar
  106. Rocheleau MJ, Sitholé BB, Allen LH, Noel Y (1999) Fungal treatment of aspen for wood resin reduction: effect on aged aspen wood chips at room temperature and at 5 °C. Holzforschung 53:16–20CrossRefGoogle Scholar
  107. Rodríguez Couto S, Toca Herrera JL (2006) Industrial and biotechnologcial applications of laccases: a review. Biotechnol Adv 24:500–513CrossRefGoogle Scholar
  108. Saam J, Ivanov I, Walther M, Holzhutter HG, Kuhn H (2007) Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc Natl Acad Sci USA 104:13319–13324CrossRefGoogle Scholar
  109. Sealey J, Ragauskas AJ, Elder TJ (1999) Investigations into laccase-mediator delignification of kraft pulps. Holzforschung 53:498–502CrossRefGoogle Scholar
  110. Silvério FO, Barbosa LCA, Maltha CRA, Fidêncio PH, Cruz MP, Veloso DP, Milanez AF (2008) Effect of storage time on the composition and content of wood extractives in Eucalyptus cultivated in Brazil. Bioresour Technol 99:4878–4886CrossRefGoogle Scholar
  111. Silvestre AJD, Pereira CCL, Neto CP, Evtuguin DV, Duarte AC, Cavaleiro JAS, Furtado FP (1999) Chemical composition of pitch deposits from ECF Eucalyptus globulus bleached kraft pulp mill: its relationship with wood extractives and additives in process streams. Appita J 52:375–382Google Scholar
  112. Sitholé BB, Ambayec B, Lapierre L, Allen L (2009) A study of polymerization of aspen (Populus) wood lipophilic extractives by SEC and Py-GC/MS. Proc Int Symp Wood Fiber Pulp Chem 15Google Scholar
  113. Skals PB, Krabek A, Nielsen PH, Wenzel H (2008) Environmental assessment of enzyme assisted processing in pulp and paper industry. Int J Life Cycle Assess 13:124–132CrossRefGoogle Scholar
  114. Su Y, Wang EI, Farrell R, Ho C-I, Chang H-M (2004) Screening of fungi for removal of wood extractives. Proc Appita Annu Conf Exhibit 58:27–34Google Scholar
  115. Sun RC, Sun XF (2001) Identification and quantitation of lipophilic extractives from wheat straw. Ind Crops Prod 14:51–64CrossRefGoogle Scholar
  116. Torres P, Datla A, Rajasekar VW, Zambre S, Ashar T, Yates M, Rojas-Cervantes ML, Calero-Rueda O, Barba V, Martínez MJ, Ballesteros A, Plou FJ (2008) Characterization and application of a sterol esterase immobilized on polyacrylate epoxy-activated carriers (Dilbeads (TM)). Catal Commun 9:539–545CrossRefGoogle Scholar
  117. Valls C, Molina S, Vidal T, del Río JC, Colom J, Martínez AT, Gutiérrez A, Roncero MB (2009) Influence of operation conditions on laccase-mediator removal of sterols from eucalypt pulp. Process Biochem Online. doi:10.1016/j.procbio.2009.05.002Google Scholar
  118. van Beek TA, Kuster B, Claassen FW, Tienvieri T, Bertaud F, Lenon G, Petit-Conil M, Sierra-Alvarez R (2007) Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: Influence on extractive contents, pulping process parameters, paper quality and effluent toxicity. Bioresour Technol 98:302–311CrossRefGoogle Scholar
  119. Widsten P, Kandelbauer A (2008) Laccase application in the forest processing industries: a review. Enzyme Microb Technol 42:293–307CrossRefGoogle Scholar
  120. Xu F (2005) Applications of oxidoreductases: recent progress. Indust Biotechnol 1:38–50CrossRefGoogle Scholar
  121. Zhang X, Stebbing DW, Saddler JN, Beatson RP, Kruus K (2000) Enzyme treatments of the dissolved and colloidal substances present in mill white water and the effects on the resulting paper properties. J Wood Chem Technol 20:321–335CrossRefGoogle Scholar
  122. Zhang X, Eigendorf G, Stebbing DW, Mansfield SD, Saddler JN (2002) Degradation of trilinolein by laccase enzymes. Arch Biochem Biophys 405:44–54CrossRefGoogle Scholar
  123. Zhang X, Renaud S, Paice M (2005) The potential of laccase to remove extractives present in pulp and white water from TMP newsprint mills. J Pulp Paper Sci 31:175–180Google Scholar
  124. Zhang X, Nguyen D, Paice MG, Tsang A, Renaud S (2007) Degradation of wood extractives in thermo-mechanical pulp by soybean lipoxygenase. Enzyme Microb Technol 40:866–873CrossRefGoogle Scholar
  125. Zimmerman WC, Blanchette RA, Burnes TA, Farrell RL (1995) Melanin and perithecial development in Ophiostoma piliferum. Mycologia 87:857–863CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ana Gutiérrez
    • 1
  • José C. del Río
    • 1
  • Ángel T. Martínez
    • 2
  1. 1.Instituto de Recursos Naturales y Agrobiología de SevillaCSICSevilleSpain
  2. 2.Centro de Investigaciones BiológicasCSICMadridSpain

Personalised recommendations