(Hemi-)Cellulose Degrading Enzymes and Their Encoding Genes from Aspergillus and Trichoderma

  • Ronald P. de VriesEmail author
  • Evy Battaglia
  • Pedro M. Coutinho
  • Bernard Henrissat
  • Jaap Visser
Part of the The Mycota book series (MYCOTA, volume 10)


Aspergillus and Trichoderma are the best-studied fungi with respect to cellulose and hemicelluloses degradation due to their industrial importance. In this chapter, we give an overview of the current knowledge on the enzymes, genes and regulatory functions involved in this process. The current availability of fungal genome sequences has provided a much better understanding of the enzyme diversity involved in the degradation of these polysaccharides and provides an ideal starting point for further scientific research and the discovery of novel and improved enzymes for industrial application.


Ferulic Acid Glycoside Hydrolase Feruloyl Esterase Accessory Enzyme Xylose Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ademark P, Varga A, Medve J, Harjunpaa V, Drakenberg T, Tjerneld F, Stålbrand H (1998) Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a β-mannanase. J Biotechnol 63:199–200Google Scholar
  2. Ademark P, Lundqvist J, Hagglund P, Tenkanen M, Torto N, Tjerneld F, Stålbrand H (1999) Hydrolytic properties of a β-mannosidase purified from Aspergillus niger. J Biotechnol 75:281–289Google Scholar
  3. Ademark P, de Vries RP, Hagglund P, Stalbrand H, Visser J (2001a) Cloning and characterization of Aspergillus niger genes encoding an alpha-galactosidase and a beta-mannosidase involved in galactomannan degradation. Eur J Biochem 268:2982–2990Google Scholar
  4. Ademark P, Larsson M, Tjerneld F, Stålbrand H (2001b) Multiple α-galactosidases from Aspergillus niger: purification, characterization, and substrate specificities. Enzyme Microb Technol 29:441–448Google Scholar
  5. Akel E, Metz B, Seiboth B, Kubicek CP (2009) Molecular regulation of arabinan and l-arabinose metabolism in Hypocrea jecorina (Trichoderma reesei). Eukaryot Cell 8:1837–1844Google Scholar
  6. Albersheim P, Darvill AG, O’Neill MA, Schols HA, Voragen AGJ (1996) An hypothesis: the same six polysaccharides are components of the primary cell walls of all higher plants. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Elsevier, Amsterdam, pp 47–55Google Scholar
  7. Alberto F, Navarro D, de Vries RP, Asther M, Record E (2009) Technical advance in fungal biotechnology: development of a miniaturized culture method and an automated high-throughput screening. Lett Appl Microbiol 49:278–282Google Scholar
  8. Ali S, Sayed A (1992) Regulation of cellulase biosynthesis in Aspergillus terreus. World J Microbiol Biotechnol 8:73–75Google Scholar
  9. Andersen MR, Vongsangnak W, Panagiotou G, Salazar MP, Lehmann L, Nielsen J (2008) A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proc Natl Acad Sci USA 105:4387–4392Google Scholar
  10. Bagga PS, Sandhu DK, Sharma S (1990) Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans. J Appl Bacteriol 68:61–68Google Scholar
  11. Battaglia E, Visser L, Nijssen A, van Veluw J, Wösten HAB, de Vries RP (2010) Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in the Eurotiales. Stud Mycol (in press)Google Scholar
  12. Bedford MR, Classen HL (1992) The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye-fed broiler chicks. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, pp 361–370Google Scholar
  13. Benoit I, Danchin EG, Bleichrodt RJ, de Vries RP (2008) Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 30:387–396Google Scholar
  14. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290Google Scholar
  15. Biely P, Vrsanská M, Gorbacheva IV (1983) The active site of an acidic endo-1,4-beta-xylanase of Aspergillus niger. Biochim Biophys Acta 743:155–161Google Scholar
  16. Biely P, Vrsanská M, Claeyssens M (1991) The endo-1,4-beta-glucanase I from Trichoderma reesei – action on beta-1,4-oligomers and polymers derived from d-glucose and d-xylose. Eur J Biochem 200:157–163Google Scholar
  17. Biely P, de Vries RP, Vranská M, Visser J (2000) Inverting character of α-glucuronidase A from Aspergillus tubingensis. Biochim Biophys Acta 1474:360–364Google Scholar
  18. Brillouet J-M, Joseleau JP (1987) Investigation of the structure of a heteroxylan from the outer pericarp (beeswing bran) of wheat kernel. Carbohydr Res 159:109–126Google Scholar
  19. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238Google Scholar
  20. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30Google Scholar
  21. Civas A, Eberhard R, le Dizet P, Petek F (1984) Glycosidases induced in Aspergillus tamarii. Secreted α-d-galactosidase and β-d-mannanase. Biochem J 219:857–863Google Scholar
  22. Coutinho PM, Andersen MR, Kolenova K, vanKuyk PA, Benoit I, Gruben BS, Trejo-Aguilar B, Visser H, van Solingen P, Pakula T, Seiboth B, Battaglia E, Aguilar-Osorio G, de Jong JF, Ohm RA, Aguilar M, Henrissat B, Nielsen J, Stalbrand H, de Vries RP (2009) Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae. Fungal Genet Biol 46[Suppl 1]:S161–S169Google Scholar
  23. Critchley P (1987) Commercial aspects of biocatalysis in low-water systems. In: Laane C, Tramper J, Lilly MD (eds) Biocatalysis in organic media. Elsevier, Amsterdam, pp 173–183Google Scholar
  24. de Graaff LH, van den Broeck HC, van Ooijen AJJ, Visser J (1994) Regulation of the xylanase-encoding xlnA gene of Aspergillus tubingensis. Mol Microbiol 12:479–490Google Scholar
  25. de Groot MJL, van de Vondervoort PJI, de Vries RP, vanKuyk PA, Ruijter GJG, Visser J (2003) Isolation and characterization of two specific regulatory Aspergillus niger mutants shows antagonistic regulation of arabinan and xylan metabolism. Microbiology 149:1183–1191Google Scholar
  26. de Vries RP, Visser J (1999) Regulation of the feruloyl esterase (faeA) gene from Aspergillus niger. Appl Environ Microbiol 65:5500–5503Google Scholar
  27. de Vries RP, Michelsen B, Poulsen CH, Kroon PA, van den Heuvel RH, Faulds CB, Williamson G, van den Hombergh JP, Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63:4638–4644Google Scholar
  28. de Vries RP, Poulsen CH, Madrid S, Visser J (1998) aguA, the gene encoding an extracellular α-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. J Bacteriol 180:243–249Google Scholar
  29. de Vries RP, van den Broeck HC, Dekkers E, Manzanares P, de Graaff LH, Visser J (1999a) Differential expression of three α-galactosidase genes and a single β-galactosidase gene from Apergillus niger. Appl Environ Microbiol 65:2453–2460Google Scholar
  30. de Vries RP, Visser J, de Graaff LH (1999b) CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150:281–285Google Scholar
  31. de Vries RP, Kester HCM, Poulsen CH, Benen JAE, Visser J (2000) Synergy between accessory enzymes from Aspergillus in the degradation of plant cell wall polysaccharides. Carbohydr Res 327:401–410Google Scholar
  32. de Vries RP, Kester HCM, vanKuyk PA, Visser J (2002a) The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation, and is specifically induced on aromatic compounds. Biochem J 363:377–386Google Scholar
  33. de Vries RP, van de Vondervoort PJI, Hendriks L, van de Belt M, Visser J (2002b) Regulation of the α-glucuronidase encoding gene (aguA) from Aspergillus niger. Mol Gen Genet 268:96–102Google Scholar
  34. de Vries RP, Burgers K, van de Vondervoort PJI, Frisvad JC, Samson RA, Visser J (2004) A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production. Appl Environ Microbiol 70:3954–3959Google Scholar
  35. de Vries RP, Burgers K, van de Vondervoort PJI, Frisvad JC, Samson RA, Visser J (2005a) AAspergillus vadensis, a new species of the group of black aspergilli. Antonie Van Leeuwenhoek 87:195–203Google Scholar
  36. de Vries RP, van Grieken C, vanKuyk PA, Wösten HAB (2005b) The value of genome sequences in the rapid identification of novel genes encoding specific plant cell wall degrading enzymes. Curr Genomics 6:157–187Google Scholar
  37. Dowzer CEA, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701–5709Google Scholar
  38. Duranova M, Hirsch J, Kolenova K, Biely P (2009a) Fungal glucuronoyl esterases and substrate uronic acid recognition. Biosci Biotechnol Biochem 73:2483–2487Google Scholar
  39. Duranova M, Spanikova S, Wosten HA, Biely P, de Vries RP (2009b) Two glucuronoyl esterases of Phanerochaete chrysosporium. Arch Microbiol 191:133–140Google Scholar
  40. Ebringerová A, Hromádková Z, Petráková E, Hricovíni M (1990) Structural features of a water-soluble l-arabinoxylan from rye bran. Carbohydr Res 198:57–66Google Scholar
  41. Endo Y, Yokoyama M, Morimoto M, Shirai K, Chikamatsu G, Kato N, Tsukagoshi N, Kato M, Kobayashi T (2008) Novel promoter sequence required for inductive expression of the Aspergillus nidulans endoglucanase gene eglA. Biosci Biotechnol Biochem 72:312–320Google Scholar
  42. Eriksson K-W, Winell M (1968) Purification and characterization of a fungal β-mannanase. Acta Chem Scand 22:1924–1934Google Scholar
  43. Flipphi MJA, Visser J, van der Veen P, de Graaff LH (1994) Arabinase gene expression in Aspergillus niger: indications for co-ordinated gene expression. Microbiology 140:2673–2682Google Scholar
  44. Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y (2009) Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol 46:564–574Google Scholar
  45. Ganter C, Bock A, Buckel P, Mattes R (1988) Production of thermostable, recombinant α-galactosidase suitable for raffinose elimination from sugar beet syrup. J Biotechnol 8:301–310Google Scholar
  46. Gielkens MMC, Visser J, de Graaff LH (1997) Arabinoxylan degradation by fungi: characterisation of the arabinoxylan arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis. Curr Genet 31:22–29Google Scholar
  47. Gielkens MMC, Dekkers E, Visser J, de Graaff LH (1999a) Two cellobiohydrolase-encoding genes from Aspergillus niger require d-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol 65:4340–4345Google Scholar
  48. Gielkens MMC, Gonzales-Candelas L, Sanchez-Torres P, van de Vondervoort PJI, de Graaf LH, Visser J (1999b) The abfB gene encoding the major α-l-arabinofuranosidase of Aspergillus nidulans: nucleotide sequence, regulation and construction of a disrupted strain. Microbiology 145:735–741Google Scholar
  49. Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta 1674:268–281Google Scholar
  50. Hagglund P, Eriksson T, Collen A, Nerinckx W, Claeyssens M, Stalbrand H (2003) A cellulose-binding module of the Trichoderma reesei beta-mannanase Man5A increases the mannan-hydrolysis of complex substrates. J Biotechnol 101:37–48Google Scholar
  51. Hasper AA, Dekkers E, van Mil M, van de Vondervoort PJI, de Graaff LH (2002) EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microbiol 68:1556–1560Google Scholar
  52. Hasper AA, Trindade LM, van der Veen D, van Ooyen AJ, de Graaff LH (2004) Functional analysis of the transcriptional activator XlnR from Aspergillus niger. Microbiology 150:1367–1375Google Scholar
  53. Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168Google Scholar
  54. Ibatullin FM, Baumann MJ, Greffe L, Brumer H (2008) Kinetic analyses of retaining endo-(xylo)glucanases from plant and microbial sources using new chromogenic xylogluco-oligosaccharide aryl glycosides. Biochemistry 47:7762–7769Google Scholar
  55. Kantelinen A, Ratto M, Sundquist J, Ranua M, Viikari L, Linko M (1988) Hemicelluloses and their potential role in bleaching. Int Pulp Bleach Conf 1988:1–9Google Scholar
  56. Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H (2002) Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 50:2161–2168Google Scholar
  57. Kitamoto N, Yoshino S, Ito M, Kimura T, Ohmiya K, Tsukagoshi N (1998) Repression of the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae by introduction of multiple copies of the xynF1 promoter. Appl Microbiol Biotechnol 50:558–563Google Scholar
  58. Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278Google Scholar
  59. Kormelink FJM, Searle-van Leeuwen MJF, Wood TM, Voragen AGJ (1991) Purification and characterization of a (1,4)-β-d-arabinoxylan arabinofuranohydrolase from Aspergillus awamori. Appl Microbiol Biotechnol 35: 753–758Google Scholar
  60. Kormelink FJM, Gruppen H, Vietor RJ, Voragen AGJ (1993a) Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydr Res 249:355–367Google Scholar
  61. Kormelink FJM, Lefebvre B, Strozyk F, Voragen AGJ (1993b) The purification and characterisation of an acetyl xylan esterase from Aspergillus niger. J Biotechnol 27:267–282Google Scholar
  62. Koseki T, Furuse S, Iwano K, Sakai H, Matsuzawa H (1997) An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem J 326:485–490Google Scholar
  63. Kroon PA, Wiliamson G (1999) Hydroxycinnamates in plants and food: current and future perspectives. J Sci Food Agric 79:355–361Google Scholar
  64. Kulmburg P, Mathieu M, Dowzer C, Kelly J, Felenbok B (1993) Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CreA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7:847–857Google Scholar
  65. Li X-L, Skory CD, Cotta MA, Puchart V, Biely P (2008) Novel family of carbohydrate esterases, based on identification of the Hypocrea jecorina acetyl esterase gene. Appl Environ Microbiol 74:7482–7489Google Scholar
  66. Lin JS, Tang M-Y, Fellers JF (1987) Fractal analysis of cotton cellulose as characterized by small-angle X-ray scattering. In: Atalla RH (ed.) The structures of cellulose. ACS symposium series. ACS, Washington, D.C., pp 233–254Google Scholar
  67. Maat J, Roza M, Verbakel J, Stam H, Santos da Silva M, Borrel M, Egmond MR, Hagemans MLD, van Gorcom RFM, Hessing JGM, van den Hondel CAMJJ, van Rotterdam C (1992) Xylanases and their applications in bakery. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, pp 349–360Google Scholar
  68. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161Google Scholar
  69. Maillard MN, Berset C (1995) Evolution of antioxidant activity during kilning: role of insoluble bound phenolic acids of barley and malt. J Agric Food Chem 43:1789–1793Google Scholar
  70. Manzanares P, de Graaff LH, Visser J (1998) Characterization of galactosidases from Aspergillus niger: purification of a novel α-galactosidase activity. Enzyme Microb Technol 22:383–390Google Scholar
  71. Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380Google Scholar
  72. Margolles-Clark E, Tenkanen M, Luonteri E, Penttilä M (1996) Three a-galactosidase genes of Trichoderma reesei cloned by expression in yeast. Eur J Biochem 240:104–111Google Scholar
  73. Marmorstein R, Harrison SC (1994) DNA recognition by GAL4: structure of the protein–DNA complex. Nature 356:408–414Google Scholar
  74. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, Lopez de Leon A, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thaye N, Westerholm-Parvinen A, Schoch CL, Yao J, Barbote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequence analysis of the cellulolytic fungus Trichoderma reesei (syn. Hypocrea jecorina) reveals a surprisingly limited inventory of carbohydrate-active enzymes. Nat Biotechnol 26:553–560Google Scholar
  75. Marui J, Kitamoto N, Kato M, Kobayashi T, Tsukagoshi N (2002a) Transcriptional activator, AoXlnR, mediates cellulose-inductive expression of the xylanolytic and cellulolytic genes in Aspergillus oryzae. FEBS Lett 528:279–282Google Scholar
  76. Marui J, Tanaka A, Mimura S, de Graaff LH, Visser J, Kitamoto N, Kato M, Kobayashi T, Tsukagoshi N (2002b) A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genet Biol 35:157–169Google Scholar
  77. McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed.) The cytoskeletal basis of plant growth and form. Academic, New York, pp 109–129Google Scholar
  78. McCrae SI, Leith KM, A.H. G, Wood TM (1994) Xylan degrading enzyme system produced by the fungus Aspergillus awamori: isolation and characterization of a feruloyl esterase and a p-coumaroyl esterase. Enzyme Microbiol Technol 16:826–834Google Scholar
  79. McNeill M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663Google Scholar
  80. Micheli PA (1729) Nova Plantarum Genera. Micheli, FlorenceGoogle Scholar
  81. Mulimani VH, Ramalingam R (1995) Enzymic hydrolysis of raffinose and stachiose in soymilk by alpha-galactosidase from Gibberella fujikuroi. Biochem Mol Biol Int 36:897–905Google Scholar
  82. Murakami A, Nakamura Y, Koshimizu K, Takahashi D, Matsumoto K, Hagihara K, Taniguchi H, Nomura E, Hosoda A, Tsuno T, Maruta Y, Kim HW, Kawabata K, Ohigashi H (2002) FA15, a hydrophobic derivative of ferulic acid, suppresses inflammatory responses and skin tumor promotion: comparison with ferulic acid. Cancer Lett 180:121–129Google Scholar
  83. Noguchi Y, Sano M, Kanamaru K, Ko T, Takeuchi M, Kato M, Kobayashi T (2009) Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae. Appl Microbiol Biotechnol 85:141–154Google Scholar
  84. O’Neil J, Bugno M, Stanley MS, Barham-Morris JB, Woodcock NA, Clement DJ, Clipson NJW, Whitehead MP, Fincham DA, Hooley P (2002) Cloning of a novel gene encoding a C2H2 zinc finger protein that alleviates sensitivity to abiotic stresses in Aspergillus nidulans. Mycol Res 106:491–498Google Scholar
  85. Ouyang J, Yan M, Kong D, Xu L (2006) A complete protein pattern of cellulase and hemicellulase genes in the filamentous fungus Trichoderma reesei. Biotechnol J 1:1266–1274Google Scholar
  86. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin E, GJ, Debets AJM, Dekker P, van Dijck PWM, van Dijk A, Dijkhuizen L, Driessen AJM, d’Enfert C, Geysens S, Goosen C, Groot GSP, de Groot PWJ, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JPTW, van den Hondel CAMJJ, van der Heijden RTJM, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, vanKuyk PA, Lauber J, Lu X, van der Maarel MJEC, Meulenberg R, Menke H, Mortimer AM, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NNME, Ram AFJ, Rinas U, Roubos JA, Sagt CMJ, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJI, Wedler H, Wösten HAB, Zeng A-P, van Ooyen AJJ, Visser J, Stam H (2007) Genome sequence of Aspergillus niger strain CBS 513.88: a versatile cell factory. Nat Biotechnol 25:221–231Google Scholar
  87. Peleg H, Naim M, Zehavi U, Rouseff RL, Nag S (1992) Pathways of 4-vinylguaiacol formation from ferulic acid in model solutions of orange juice. J Agric Food Chem 40:764–767Google Scholar
  88. Pellerin P, Gosselin M, Lepoutre J-P, Samain E, Debeire P (1991) Enzymic production of oligosaccharides from corncob xylan. Enzyme Microb Technol 13:617–621Google Scholar
  89. Petit-Benvegnen M-D, Saulnier L, Rouau X (1998) Solubilization of arabinoxylans from isolated water-unextractable pentosans and wheat flour doughs by cell wall degrading enzymes. Cereal Chem 75:551–556Google Scholar
  90. Poutanen K (1997) Enzymes. An important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol 8:300–306Google Scholar
  91. Puls J, Borneman A, Gottschalk D, Wiegel J (1988) Xylobiose and xylooligomers. Methods Enzymol 160:528–536Google Scholar
  92. Puls J, Schorn B, Schuseil J (1992) Acetylmannanesterase: a new component in the arsenal of wood mannan degrading enzymes. In: Kuwahara M, Shimada M (eds) Biotechnology in pulp and paper industry. Uni, Tokyo, pp 357–363Google Scholar
  93. Reese ET, Shibata Y (1965) β-Mannanases of fungi. Can J Microbiol 11:167–183Google Scholar
  94. Ruijter GJG, Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151:103–114Google Scholar
  95. Sachslehner A, Foidl G, Foidl N, Gubitz G, Haltrich D (2000) Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. J Biotechnol 80:127–134Google Scholar
  96. Schafer T, Kirk O, Borchert TV, Fuglsang CC, Pedersen S, Salmon S, Olsen HS, Deinhammer R, Lund H (2002) Enzymes for technical applications. In: Fahnestock SR, Steinbuchel SR (eds) Biopolymers. Wiley VCH, Weinheim, pp 377–438Google Scholar
  97. Sigoillot C, Camarero S, Vidal T, Record E, Asther M, Perez-Boada M, Martinez MJ, Sigoillot JC, Asther M, Colom JF, Martinez AT (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J Biotechnol 115:333–343Google Scholar
  98. Sims I, Craik DJ, Bacic A (1997) Structural characterisation of galactoglucomannan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydr Res 303:79–92Google Scholar
  99. Slade R, Bauen A, Shah N (2009) The commercial performance of cellulosic ethanol supply-chains in Europe. Biotechnol Biofuels 2:3Google Scholar
  100. Somiari RI, Balogh E (1995) Properties of an extracellular glycosidase of Aspergillus niger suitable for removal of oligosaccharides from cowpea meal. Enzyme Microb Technol 17:311–316Google Scholar
  101. Stricker AR, Steiger MG, Mach RL (2007) Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett 581:3915–3920Google Scholar
  102. Stricker AR, Mach RL, de Graaff LH (2008) Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 78:211–220Google Scholar
  103. Sundberg M, Poutanen K, Markkanen P, Linko M (1990) An extracellular esterase of Aspergillus awamori. Biotechnol Appl Biochem 12:670–680Google Scholar
  104. Tabka MG, Herpoël-Gimberta I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microbiol Technol 39:897–902Google Scholar
  105. Tamayo EN, Villanueva A, Hasper AA, de Graaff LH, Ramon D, Orejas M (2008) CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genet Biol 45:984–993Google Scholar
  106. Tapin S, Sigoillot J-C, Asther M, Petit-Conil M (2006) Feruloyl esterase utilization for simultaneous processing of nonwood plants into phenolic compounds and pulp fibers. J Agric Food Chem 54:3697–3703Google Scholar
  107. Tenkanen M (1998) Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem 27:19–24Google Scholar
  108. Tenkanen M, Schuseil J, Puls J, Poutanen K (1991) Production, purification and characterisation of an esterase liberating phenolic acids from lignocellulosics. J Biotechnol 18:69–84Google Scholar
  109. Tenkanen M, Thornton J, Viikari L (1995) An acetylglucomannan esterase of Aspergillus oryzae; purification, characterization and role in the hydrolysis of O-acetyl-galactoglucomannan. J Biotechnol 42:197–206Google Scholar
  110. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70Google Scholar
  111. Uchida H, Nanri T, Kawabata Y, Kusakabe I, Murakami K (1992) Purification and characterization of intracellular α-glucuronidase from Aspergillus niger 5-16. Biosci Biotechnol Biochem 56:1608–1615Google Scholar
  112. van Paridon PA, Boonman JCP, Selten GCM, Geerse C, Barug D, de Bot PHM, Hemke G (1992) The application of fungal endoxylanase in poultry diets. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (eds) Xylans and xylanases, progress in biotechnology. Elsevier, Amsterdam, pp 371–378Google Scholar
  113. van Peij N (1999) Transcriptional regulation of the xylanolytic enzyme system of Aspergillus. Dissertation, Wageningen University, WageningenGoogle Scholar
  114. van Peij N, Gielkens MMC, de Vries RP, Visser J, de Graaff LH (1998a) The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64:3615–3619Google Scholar
  115. van Peij N, Visser J, de Graaff LH (1998b) Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27:131–142Google Scholar
  116. Vidmar S, Turk V, Kregar I (1984) Cellulolytic complex of Aspergillus niger under conditions for citric acid production. Isolation and characterization of two β-(1→44)-glucan hydrolases. Appl Microbiol Biotechnol 20:326–330Google Scholar
  117. Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching – from an idea to the industry. FEMS Microbiol Rev 13:335–350Google Scholar
  118. Wilkie KCB (1979) The hemicelluloses of grasses and cereals. Adv Carbohydr Chem Biochem 36:215–264Google Scholar
  119. Wilkie KCB, Woo S-L (1977) A heteroxylan and hemicellulosic materials from bamboo leaves, and a reconsideration of the general nature of commonly occurring xylans and other hemicelluloses. Carbohydr Res 57:145–162Google Scholar
  120. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299Google Scholar
  121. Witte K, Wartenberg A (1989) Purification and properties of two β-glucosidases isolated from Aspergillus niger. Acta Biotechnol 9:179–190Google Scholar
  122. Wong KKY, Saddler JN (1993) Applications of hemicellulases in the food, feed and paper and pulp industries. In: Coughlan MP, Hazlewood PG (eds) Hemicellulose and hemicellulases. Portland, London, pp 127–143Google Scholar
  123. Wu G, Bryant MM, Voitle RA, Roland DA (2005) Effects of beta-mannanase in corn-soy diets on commercial leghorns in second-cycle hens. Poult Sci 84:894–897Google Scholar
  124. Zeikus JG, Lee C, Lee YE, Saha BC (1991) Thermostable saccharidases. New sources, uses and biodesign. ACS Symp Ser 460:36–51Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ronald P. de Vries
    • 1
    Email author
  • Evy Battaglia
    • 2
  • Pedro M. Coutinho
    • 3
  • Bernard Henrissat
    • 3
  • Jaap Visser
    • 4
  1. 1.CBS-KNAW Fungal Biodiversity CentreUtrechtThe Netherlands
  2. 2.MicrobiologyUtrecht UniversityUtrechtThe Netherlands
  3. 3.AFMB-UMR 6098 CNRS/Universités Aix-Marseille I and IIMarseilleFrance
  4. 4.Fungal Genetics and Technology ConsultancyWageningenThe Netherlands

Personalised recommendations