Computability and Dynamical Systems

Chapter
Part of the Springer Proceedings in Mathematics book series (PROM, volume 1)

Abstract

In this paper we explore results that establish a link between dynamical systems and computability theory (not numerical analysis). In the last few decades, computers have increasingly been used as simulation tools for gaining insight into dynamical behavior. However, due to the presence of errors inherent in such numerical simulations, with few exceptions, computers have not been used for the nobler task of proving mathematical results. Nevertheless, there have been some recent developments in the latter direction. Here we introduce some of the ideas and techniques used so far, and suggest some lines of research for further work on this fascinating topic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

cknowledgements

J. Buescu was partially supported by Fundação para a Ciência e a Tecnologia, Financiamento Base 2009 – ISFL/1/209. D. Graça was partially supported by Fundação para a Ciência e a Tecnologia and EU FEDER POCTI/POCI via SQIG – Instituto de Telecomunicações. DG was also attributed a Taft Research Collaboration grant which made possible a research visit to23pc]Please update references “[11, 16, 22, 23, 24]”. U. Cincinnati. N. Zhong was partially supported by the 2009 Taft Summer Research Fellowship.

References

  1. 1.
    Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hierarchy. J. Comput. System Sci. 57(3), 389–398 (1998)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theoret. Comput. Sci. 138, 35–65 (1995)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Blondel, V.D., Bournez, O., Koiran, P., Tsitsiklis, J.N.: The stability of saturated linear dynamical systems is undecidable. J. Comput. System Sci. 62, 442–462 (2001)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer (1998)Google Scholar
  5. 5.
    Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Am. Math. Soc. 21(1), 1–46 (1989)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoret. Comput. Sci. 210(1), 21–71 (1999)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bournez, O., Campagnolo, M.L., Gracía, D.S., Hainry, E.: Polynomial differential equations compute all real computable functions on computable compact intervals. J. Complexity 23(3), 317–335 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoret. Comput. Sci. 138(1), 67–100 (1995)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Braverman, M., Cook, S.: Computing over the reals: foundations for scientific computing. Notices Amer. Math. Soc. 53(3), 318–329 (2006)MATHMathSciNetGoogle Scholar
  10. 10.
    Braverman, M., Yampolsky, M.: Non-computable Julia sets. J. Am. Math. Soc. 19(3), 551– 0578 (2006)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Buescu, J., Gracía, D., Zhong, N.: Computability and horseshoes. preprint (2009)Google Scholar
  12. 12.
    Collins, P.: Continuity and computability of reachable sets. Theor. Comput. Sci. 341, 162–195 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Collins, P.: Chaotic dynamics in hybrid systems. Nonlinear Dyn. Syst. Theory 8(2), 169–194 (2008)MATHMathSciNetGoogle Scholar
  14. 14.
    Collins, P.: Computability of controllers for discrete-time semicontinuous systems. In: Proc. 18th International Symposium on the Mathematical Theory of Networks and Systems (2008)Google Scholar
  15. 15.
    Collins, P.: The reach-and-evolve algorithm for reachability analysis of nonlinear dynamical systems. Electron. Notes Theor. Comput. Sci. 223, 87–102 (2008)CrossRefGoogle Scholar
  16. 16.
    Collins, P.: Controllability and falsification of hybrid systems. In Proc. European Control Conference, To appear (2009)Google Scholar
  17. 17.
    Collins, P., Gracía, D.S.: Effective computability of solutions of differential inclusions Ů the ten thousand monkeys approach. J. Universal Comput. Sci. 15(6), 1162–1185 (2009)MATHMathSciNetGoogle Scholar
  18. 18.
    Delvenne, J.C., Kurka, P., Blondel, V.: Decidability and universality in symbolic dynamical systems. Fund. Inform. 74(4), 463–490 (2006)MATHMathSciNetGoogle Scholar
  19. 19.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A A400, 97–117 (1985)MathSciNetGoogle Scholar
  20. 20.
    Duffing, G.: Erzwungene Schwingungen bei Verĺanderlicher Eigenfrequenz. Vieweg Braunschweig (1918)Google Scholar
  21. 21.
    Galatolo, S., Hoyrup, M., Rojas, C.: Effective symbolic dynamics, random points, statistical behavior, complexity and entropy. Inform. Comput. (to appear)Google Scholar
  22. 22.
    Gracía, D., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of maximal intervals of IVPs. Trans. Am. Math. Soc. 361(6), 2913–2927 (2009)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Gracía, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential equations. Adv. Appl. Math. 40(3), 330–349 (2008)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Gracía, D.S., Campagnolo, M.L., Buescu, J.: Computational bounds on polynomial differential equations. Appl. Math. Comput. 215(4), 1375–1385 (2009)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Gracía, D.S., Zhong, N.: Computing domains of attraction for planar dynamics. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) 8th International Conference on Unconventional Computation (UC 2009), LNCS 5715, pp. 179–190. Springer (2009)Google Scholar
  26. 26.
    Hertling, P., Spandl, C.: Computability theoretic properties of the entropy of gap shifts. Fundam. Inf. 83, 141–157 (2008)MATHMathSciNetGoogle Scholar
  27. 27.
    Hertling, P., Spandl, C.: Shifts with decidable language and noncombustible entropy. Discrete Math. Theor. Comput. Sci. 10, 75–94 (2008)MATHMathSciNetGoogle Scholar
  28. 28.
    Hoyrup, M.: Dynamical systems: stability and simulability. Math. Structures Comput. Sci. 17, 247–259 (2007)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Hoyrupa, M., Kolaka, A., Longo, G.: Computability and the morphological complexity of some dynamics on continuous domains. Theor. Comput. Sci. 398, 170–182 (2008)CrossRefGoogle Scholar
  30. 30.
    Hoyrupa, M., Rojas, C.: Computability of probability measures and martin-lf randomness over metric spaces. Inform. Comput. 207, 830–847 (2009)CrossRefGoogle Scholar
  31. 31.
    Ko, K.I.: Computational Complexity of Real Functions. Birkhĺauser (1991)Google Scholar
  32. 32.
    Koiran, P.: The topological entropy of iterated piecewise affine maps is uncomputable. Discrete Math. Theor. Comput. Sci. 4(2), 351–356 (2001)MATHGoogle Scholar
  33. 33.
    Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can simulate universal Turing machines. Theor. Comput. Sci. 210(1), 217–223 (1999)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Lanford, O.E.: A computer-assisted proof of the feigenbaum conjectures. Bull. AMS 6, 427– 434 (1982)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Legenstein, R., Maass, W.: What makes a computational system dynamically powerful? In: Haykin, S., Principe, J.C., Sejnowski, T., Mcwhirter, J. (eds.) New Directions in Statistical Signal Processing: From Systems to Brain, pp. 127–154. MIT (2007)Google Scholar
  36. 36.
    Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  37. 37.
    Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid systems. Automatica 35, 349–370 (1999)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog computations. Neural Comput. 10(5), 1071–1095 (1998)CrossRefGoogle Scholar
  39. 39.
    Maass, W., Sontag, E.: Analog neural nets with gaussian or other common noise distributions cannot recognize arbitrary regular languages. Neural Comp. 11, 771–782 (1999)CrossRefGoogle Scholar
  40. 40.
    Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64(20), 2354–2357 (1990)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Peixoto, M.: Structural stability on two-dimensional manifolds. Topology 1, 101–121 (1962)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Review 1, 701–710, 754–762 (1920)Google Scholar
  43. 43.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer (1989)Google Scholar
  44. 44.
    Pour-El, M.B., Zhong, N.: The wave equation with computable initial data whose unique solution is nowhere computable. Math. Logic Q. 43, 499–509 (1997)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Rettinger, R., Weihrauch, K.: The computational complexity of some julia sets. In Proc. 35th Annual ACM Symposium on Theory of Computing, pp. 177–185. ACM (2003)Google Scholar
  46. 46.
    Rettinger, R.,Weihrauch, K., Zhong, N.: Topological complexity of blowup problems. J. Univers. Comput. Sci. 15(6), 1301–1316 (2009)MATHMathSciNetGoogle Scholar
  47. 47.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)CrossRefGoogle Scholar
  48. 48.
    Shinbrot, T., Grebogi, C., Yorke, J.A., Ott, E.: Using small perturbations to control chaos. Nature 363, 411–417 (1993)CrossRefGoogle Scholar
  49. 49.
    Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Course Technology (2005)Google Scholar
  50. 50.
    Smale, S.: Structurally stable systems are not dense. Am. J. Math. 88, 491–496 (1966)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Sontag, E.D.: Mathematical Control Theory, 2nd edn. Springer (1998)Google Scholar
  54. 54.
    Spandl, C.: Computing the topological entropy of shifts. Math. Log. Quart. 53(4-5), 493Ű510 (2007)Google Scholar
  55. 55.
    Spandl, C.: Computability of topological pressure for shifts of finite type with applications in statistical physics. Electr. Notes Theor. Comput. Sci. 202, 385–401 (2008)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Tucker, W.: A rigorous ode solver and smales 14th problem. Found. Comput. Math. 2(1), 53–117 (2002)MATHMathSciNetGoogle Scholar
  57. 57.
    Vidal, R., Schaffert, S., Shakernia, O., Lygeros, J., Sastry, S.: Decidable and semi-decidable controller synthesis for classes of discrete time hybrid systems. In Proc. 40th IEEE Conference on Decision and Control, pp. 1243–1248 (2001)Google Scholar
  58. 58.
    Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)Google Scholar
  59. 59.
    Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers beat the Turing machine? Proc. Lond. Math. Soc. 85(3), 312–332 (2002)CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    Zabczyk, J.: Mathematical Control Theory: An Introduction. Birkhĺauser (1992)Google Scholar
  61. 61.
    Zhong, N.: Computational unsolvability of domain of attractions of nonlinear systems. Proc. Am. Math. Soc. 137, 2773–2783 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.DM/FCULUniversity of LisbonLisbonPortugal
  2. 2.CMAFLisbonPortugal
  3. 3.DM/Faculdade de Ciências e TecnologiaUniversidade do AlgarveFaroPortugal
  4. 4.SQIG/Instituto de TelecomunicaçõesLisbonPortugal
  5. 5.DMS, University of CincinnatiCincinnatiUSA

Personalised recommendations