Advertisement

Linear Wave Propagation in Unsaturated Rocks and Soils

  • Bettina Albers

Abstract

In this contribution an overview of the continuum mechanical modeling of linear elastic partially saturated porous media and the application of such a model to linear wave propagation is given. First the involved microstructural variables are discussed and the construction of the model is presented. The macroscopic parameters used in the model are obtained by micro-macro-transition procedure from the measurable microscopic quantities. The linear elastic wave propagation analysis is demonstrated exemplarily for sandstone, sand and clayey loam. The properties of the four appearing waves – three compressional and one shear wave – are compared. Phase speeds and attenuations of these waves depend both on the frequency and on the degree of saturation.

Keywords

Capillary Pressure Capillary Pressure Curve Clayey Loam Main Soil Type Nonwetting Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, B.: Micro-macro transition and linear waves in compact granular materials. In: AIP Conference Proceedings of the IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows (to be published, 2009)Google Scholar
  2. 2.
    Albers, B.: Linear elastic wave propagation in unsaturated sands, silts, loams and clays. Submitted to Transport in Porous Media (2009)Google Scholar
  3. 3.
    Albers, B.: Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media, habilitation thesis, Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin. Shaker (2010)Google Scholar
  4. 4.
    Albers, B.: Analysis of the propagation of sound waves in partially saturated soils by means of a macroscopic linear poroelastic model. Transport in Porous Media 80(1), 173–192 (2009)CrossRefGoogle Scholar
  5. 5.
    Albers, B.: Modelling of surface waves in poroelastic saturated materials by means of a two component continuum. In: Lai, C., Wilmanski, K. (eds.) Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks, CISM Courses and Lectures, pp. 277–323. Springer, Wien (2005)CrossRefGoogle Scholar
  6. 6.
    Albers, B.: Relaxation analysis and linear stability vs. adsorption in porous materials. Continuum Mech. Thermodyn. 15(1), 73–95 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Albers, B., Wilmanski, K.: On modeling acoustic waves in saturated poroelastic media. J. Engrg. Mech. 131(9), 974–985 (2005)CrossRefGoogle Scholar
  8. 8.
    Biot, M.A., Willis, D.G.: The Elastic Coefficients of the Theory of Consolidation. J. Appl. Mech. 24, 594–601 (1957)MathSciNetGoogle Scholar
  9. 9.
    DIN 4220: Pedologic site assessment – Designation, classification and deduction of soil parameters (normative and nominal scaling). DIN Deutsches Institut für Normung e.V., Beuth Verlag GmbH (draft, in German), German title: Bodenkundliche Standortbeurteilung – Kennzeichnung, Klassifizierung und Ableitung von Bodenkennwerten (normative und nominale Skalierungen) (2005)Google Scholar
  10. 10.
    Gassmann, F.: Über die Elastizität poröser Medien. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 96(1), 1–23 (1951)MathSciNetGoogle Scholar
  11. 11.
    Geertsma, J.: The effect of fluid pressure decline on volumetric changes of porous rocks. Trans. AIME 210, 331–340 (1957)Google Scholar
  12. 12.
    Santos, J., Douglas, J., Corbero, J.: Static and dynamic behaviour of a porous solid saturated by a two-phase fluid. JASA 87(4), 1428–1438 (1990)MathSciNetGoogle Scholar
  13. 13.
    Schick, P.: Ein quantitatives Zwei-Komponenten-Modell der Porenwasser-Bindekräfte in teilgesättigten Böden. habilitation-thesis, Universität der Bundeswehr, München (2003); In German, Heft 17, Mitteilungen des Instituts für Bodenmechanik und Grundbau Google Scholar
  14. 14.
    Tolstoy, I.: Acoustics, Elasticity and Thermodynamics of Porous Media: Twenty-One Papers by Biot, M.A. Acoustical Society of America (1991)Google Scholar
  15. 15.
    Tuncay, K., Corapcioglu, M.Y.: Body waves in poroelastic media saturated by two immiscible fluids. J. Geophys. Res. 101(B11), 25149–25159 (1996)CrossRefGoogle Scholar
  16. 16.
    Van Genuchten, M.T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar
  17. 17.
    Vanorio, T., Prasad, M., Nur, A.: Elastic properties of dry clay mineral aggregates, suspensions and sandstones. Geophysical Journal International 155(1), 319–326 (2003)CrossRefGoogle Scholar
  18. 18.
    Wei, C., Muraleetharan, K.K.: Acoustical Waves in Unsaturated Porous Media. In: Proceedings 16th Engineering Mechanics Conference, ASCE, Seattle (2003)Google Scholar
  19. 19.
    White, J.E.: Underground sound. In: Application of seismic waves, Methods in Geochemistry and Geophysics, vol. 18, Elsevier, Amsterdam (1983)Google Scholar
  20. 20.
    Wilmanski, K.: On microstructural tests for poroelastic materials and corresponding Gassmann-type relations. Geotechnique 54(9), 593–603 (2004)Google Scholar
  21. 21.
    Wilmanski, K.: Waves in Porous and Granular Materials. In: Hutter, K., Wilmanski, K. (eds.) Kinetic and Continuum Theories of Granular and Porous Media, CISM 400, pp. 131–186. Springer, Wien (1999)Google Scholar
  22. 22.
    Wilmanski, K.: Thermomechanics of Continua. Springer, Berlin (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bettina Albers
    • 1
  1. 1.Institute for Geotechnical Engineering and Soil MechanicsTechnische Universität BerlinBerlinGermany

Personalised recommendations