The Hamiltonian Augmentation Problem and Its Applications to Graph Drawing
Conference paper
Abstract
In this talk we digress about the strict interplay between the graph-theoretic problem of computing a Hamiltonian augmentation of a planar graph G and the graph drawing problem of embedding G onto a given set of points. We review different Hamiltonian augmentation techniques and their impact on different variants of the corresponding graph drawing problem. We also look at universal point sets, simultaneous graph embeddings, and radial graph drawings.
Keywords
Planar Graph Distinct Point Computational Geometry Hamiltonian Path Curve Complexity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Abellanas, M., Garcia-Lopez, J., Hernández-Peñver, G., Noy, M., Ramos, P.A.: Bipartite embeddings of trees in the plane. Discrete Applied Mathematics 93(2-3), 141–148 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
- 2.Akiyama, J., Urrutia, J.: Simple alternating path problem. Discrete Mathematics 84, 101–103 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
- 3.Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. Theoretical Computer Science 408(2-3), 129–142 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
- 4.Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
- 5.Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM Journal on Computing 14, 210–223 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Chiba, N., Nishizeki, T.: The hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. Journal of Algorithms 10, 189–211 (1989)CrossRefMathSciNetGoogle Scholar
- 7.Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs. SIGACT News 20(4), 83–86 (1989)CrossRefGoogle Scholar
- 8.de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
- 9.Di Giacomo, E., Didimo, W., Liotta, G.: Radial drawings of graphs: Geometric constraints and trade-offs. Journal of Discrete Algorithms 6(1), 109–124 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
- 10.Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.: k-colored point-set embeddability of outerplanar graphs. Journal of Graph Algorithms and Applications 12(1), 29–49 (2008)zbMATHMathSciNetGoogle Scholar
- 11.Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs. Computational Geometry 30, 1–23 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
- 12.Di Giacomo, E., Liotta, G., Trotta, F.: Drawing colored graphs with constrained vertex positions and few bends per edge. Algorithmica (to appear)Google Scholar
- 13.Di Giacomo, E., Liotta, G., Trotta, F.: On embedding a graph on two sets of points. IJFCS, Special Issue on Graph Drawing 17(5), 1071–1094 (2006)zbMATHGoogle Scholar
- 14.Di Giacomo, E., Liotta, G.: Simultaneous embedding of outerplanar graphs, paths, and cycles. International Journal of Computational Geometry and Applications 17(2), 139–160 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
- 15.Enomoto, H., Miyauchi, M.S.: Embedding graphs into a three page book with O(m logn) crossings of edges over the spine. SIAM J. Discrete Math. 12(3), 337–341 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
- 16.Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. Journal of Graph Algorithms and Applications 9(3), 347–364 (2005)zbMATHMathSciNetGoogle Scholar
- 17.Everett, H., Lazard, S., Liotta, G., Wismath, S.K.: Universal sets of n points for 1-bend drawings of planar graphs with n vertices. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 345–351. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 18.Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing upward topological book embeddings of upward planar digraphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 172–183. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 19.Giordano, F., Liotta, G., Whitesides, S.: Embeddability problems for upward planar digraphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 242–253. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 20.Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Amer. Math. Monthly 98(2), 165–166 (1991)CrossRefMathSciNetGoogle Scholar
- 21.Halton, J.H.: On the thickness of graphs of given degree. Information Sciences 54, 219–238 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
- 22.Kaneko, A., Kano, M.: Straight line embeddings of rooted star forests in the plane. Discrete Applied Mathematics 101, 167–175 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
- 23.Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane - a survey. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete & Computational Geometry. Algorithms and Combinatories, vol. 25, pp. 551–570. Springer, Heidelberg (2003)Google Scholar
- 24.Kaneko, A., Kano, M., Suzuki, K.: Path coverings of two sets of points in the plane. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Mathematics, vol. 342. American Mathematical Society (2004)Google Scholar
- 25.Kaneko, A., Kano, M., Yoshimoto, K.: Alternating hamilton cycles with minimum number of crossing in the plane. International Journal of Computational Geometry & Application 10, 73–78 (2000)zbMATHMathSciNetGoogle Scholar
- 26.Kaneko, A., Kano, M.: Straight-line embeddings of two rooted trees in the plane. Discrete & Computational Geometry 21(4), 603–613 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
- 27.Kaneko, A., Kano, M., Tokunaga, S.: Straight-line embeddings of three rooted trees in the plane. In: Canadian Conference on Computational Geometry, CCCG 1998 (1998)Google Scholar
- 28.Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)zbMATHMathSciNetGoogle Scholar
- 29.Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
- 30.Mchedlidze, T., Symvonis, A.: Crossing-optimal acyclic hamiltonian path completion and its application to upward topological book embeddings. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 250–261. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 31.Mchedlidze, T., Symvonis, A.: Crossing-optimal acyclic hp-completion for outerplanar t-digraphs. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 76–85. Springer, Heidelberg (2009)Google Scholar
- 32.Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graph and Combinatorics 17, 717–728 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
- 33.Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM-SIAM Sympos. Discrete Algorithms (SODA 1990), pp. 138–148 (1990)Google Scholar
- 34.Sugiyama, K.: Graph Drawing and Applications. World Scientific, Singapore (2002)zbMATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2010