An Algorithmic Study of Switch Graphs

  • Bastian Katz
  • Ignaz Rutter
  • Gerhard Woeginger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5911)


We derive a variety of results on the algorithmics of switch graphs. On the negative side we prove hardness of the following problems: Given a switch graph, does it possess a bipartite / planar / triangle-free / Eulerian configuration? On the positive side we design fast algorithms for several connectivity problems in undirected switch graphs, and for recognizing acyclic configurations in directed switch graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cook, M.: Still Life Theory. In: New Constructions in Cellular Automata, vol. 226, pp. 93–118. Oxford University Press, Oxford (2003)Google Scholar
  2. 2.
    Cornuéjols, G.: General factors of graphs. Journal of Combinatorial Theory, Series B 45, 185–198 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de Berg, M., Khosravi, A.: Optimal binary space partitions (Manuscript) (2008)Google Scholar
  4. 4.
    Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications, Calgary, pp. 69–87 (1969)Google Scholar
  5. 5.
    Groote, J.F., Ploeger, B.: Switching graphs. In: Proceedings of the 2nd Workshop on Reachability Problems (RP 2008). ENTCS, pp. 119–135 (2008)Google Scholar
  6. 6.
    Meinel, C.: Switching graphs and their complexity. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 350–359. Springer, Heidelberg (1989)Google Scholar
  7. 7.
    Plesńik, J.: The NP-completeness of the Hamiltonian Cycle Problem in planar digraphs with degree bound two. Information Processing Letters 8(4), 199–201 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Reinhardt, K.: The simple reachability problem in switch graphs. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 461–472. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Sharan, R., Gramm, J., Yakhini, Z., Ben-Dor, A.: Multiplexing schemes for generic SNP genotyping assays. Journal of Comp. Biology 15, 514–533 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bastian Katz
    • 1
  • Ignaz Rutter
    • 1
  • Gerhard Woeginger
    • 2
  1. 1.Faculty of InformaticsUniversität Karlsruhe (TH), KIT 
  2. 2.Department of Mathematics and Computer ScienceTU Eindhoven 

Personalised recommendations