# Sub-coloring and Hypo-coloring Interval Graphs

• Rajiv Gandhi
• Sriram Pemmaraju
• Rajiv Raman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5911)

## Abstract

In this paper, we study the sub-coloring and hypo-coloring problems on interval graphs. These problems have applications in job scheduling and distributed computing and can be used as “subroutines” for other combinatorial optimization problems. In the sub-coloring problem, given a graph G, we want to partition the vertices of G into minimum number of sub-color classes, where each sub-color class induces a union of disjoint cliques in G. In the hypo-coloring problem, given a graph G, and integral weights on vertices, we want to find a partition of the vertices of G into sub-color classes such that the sum of the weights of the heaviest cliques in each sub-color class is minimized. We present a “forbidden subgraph” characterization of graphs with sub-chromatic number k and use this to derive a 3-approximation algorithm for sub-coloring interval graphs. For the hypo-coloring problem on interval graphs, we first show that it is NP-complete, and then via reduction to the max-coloring problem, show how to obtain an O(logn)-approximation algorithm for it.

## Keywords

Chromatic Number Interval Graph Chordal Graph Color Class Unit Disk Graph
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Achlioptas, D.: The complexity of g-free colorability. Discrete Math, 21–30 (1997)Google Scholar
2. 2.
Albertson, M.O., Jamison, R.E., Hedetnieme, S.T., Locke, S.C.: The subchromatic number of a graph. Discrete Math. 74, 33–49 (1989)
3. 3.
Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition and locality in distributed computation. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), pp. 364–369 (1989)Google Scholar
4. 4.
Broere, I., Mynhardt, C.M.: Generalized colorings of outerplanar and planar graphs. In: Proceedings of the 10th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 151–161 (1984)Google Scholar
5. 5.
Broersma, H., Fomin, F.V., Nesetril, J., Woeginger, G.J.: More about subcolorings. Computing 69, 187–203 (2002)
6. 6.
deWerra, D., Demange, M., Monnot, J., Paschos, V.T.: A hypocoloring model for batch scheduling. Discrete Applied Mathematics 146, 3–25 (2005)
7. 7.
Elbassioni, K.M., Raman, R., Ray, S., Sitters, R.: On the approximability of the maximum feasible subsystem problem with 0/1-coefficients. In: Proceedings of the 20th ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 1210–1219 (2009)Google Scholar
8. 8.
Fiala, J., Jansen, K., Le, V.B., Seidel, E.: Graph subcoloring:complexity and algorithms. SIAM Journal on Discrete Mathematics 16, 635–650 (2003)
9. 9.
Gardi, F.: On partitioning interval and circular-arc graphs into proper interval subgraphs with applications. In: Latin American Theoretical Informatics Symposium (LATIN), pp. 129–140 (2004)Google Scholar
10. 10.
Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Algebraic and Discrete Methods 1, 216–227 (1980)
11. 11.
Hartman, C.: Extremal Problems in Graph Theory (1997)Google Scholar
12. 12.
Fabian, K., Thomas, M., Roger, W.: On the locality of bounded growth. In: Proceedings of the 24th Annual ACM symposium on Principles of Distributed Computing (PODC), pp. 60–68. ACM, New York (2005)Google Scholar
13. 13.
Marx, D.: A short proof of the NP-completeness of minimum sum interval coloring. Operations Research Letters 33(4), 382–384 (2005)
14. 14.
McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)
15. 15.
Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Trans. Parallel and Distributed Syst. 12(6), 529–543 (2001)
16. 16.
Mynhardt, C.M., Broere, I.: Generalized colorings of graphs. In: Proceedings of the 11th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 583–594 (1985)Google Scholar
17. 17.
Panconesi, A., Srinivasan, A.: On the complexity of distributed network decomposition. J. Algorithms 20(2), 356–374 (1996)
18. 18.
Pemmaraju, S.V., Pirwani, I.A.: Good quality virtual realization of unit ball graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 311–322. Springer, Heidelberg (2007)
19. 19.
Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)Google Scholar
20. 20.
Pemmaraju, S.V., Raman, R., Varadarajan, K.: Buffer minimization using max-coloring. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 562–571 (2004)Google Scholar
21. 21.
Shmueli, E., Feitelson, D.G.: Backfilling with look ahead to optimize the packing of parallel jobs. J. Parallel and Distributed Computing 65(9), 1090–1107 (1995)
22. 22.
Stacho, J.: Complexity of Generalized Colourings of Chordal Graphs (2008)Google Scholar

• Rajiv Gandhi
• 1