Advertisement

Sub-coloring and Hypo-coloring Interval Graphs

  • Rajiv Gandhi
  • Bradford GreeningJr.
  • Sriram Pemmaraju
  • Rajiv Raman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5911)

Abstract

In this paper, we study the sub-coloring and hypo-coloring problems on interval graphs. These problems have applications in job scheduling and distributed computing and can be used as “subroutines” for other combinatorial optimization problems. In the sub-coloring problem, given a graph G, we want to partition the vertices of G into minimum number of sub-color classes, where each sub-color class induces a union of disjoint cliques in G. In the hypo-coloring problem, given a graph G, and integral weights on vertices, we want to find a partition of the vertices of G into sub-color classes such that the sum of the weights of the heaviest cliques in each sub-color class is minimized. We present a “forbidden subgraph” characterization of graphs with sub-chromatic number k and use this to derive a 3-approximation algorithm for sub-coloring interval graphs. For the hypo-coloring problem on interval graphs, we first show that it is NP-complete, and then via reduction to the max-coloring problem, show how to obtain an O(logn)-approximation algorithm for it.

Keywords

Chromatic Number Interval Graph Chordal Graph Color Class Unit Disk Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D.: The complexity of g-free colorability. Discrete Math, 21–30 (1997)Google Scholar
  2. 2.
    Albertson, M.O., Jamison, R.E., Hedetnieme, S.T., Locke, S.C.: The subchromatic number of a graph. Discrete Math. 74, 33–49 (1989)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition and locality in distributed computation. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), pp. 364–369 (1989)Google Scholar
  4. 4.
    Broere, I., Mynhardt, C.M.: Generalized colorings of outerplanar and planar graphs. In: Proceedings of the 10th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 151–161 (1984)Google Scholar
  5. 5.
    Broersma, H., Fomin, F.V., Nesetril, J., Woeginger, G.J.: More about subcolorings. Computing 69, 187–203 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    deWerra, D., Demange, M., Monnot, J., Paschos, V.T.: A hypocoloring model for batch scheduling. Discrete Applied Mathematics 146, 3–25 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Elbassioni, K.M., Raman, R., Ray, S., Sitters, R.: On the approximability of the maximum feasible subsystem problem with 0/1-coefficients. In: Proceedings of the 20th ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 1210–1219 (2009)Google Scholar
  8. 8.
    Fiala, J., Jansen, K., Le, V.B., Seidel, E.: Graph subcoloring:complexity and algorithms. SIAM Journal on Discrete Mathematics 16, 635–650 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gardi, F.: On partitioning interval and circular-arc graphs into proper interval subgraphs with applications. In: Latin American Theoretical Informatics Symposium (LATIN), pp. 129–140 (2004)Google Scholar
  10. 10.
    Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Algebraic and Discrete Methods 1, 216–227 (1980)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hartman, C.: Extremal Problems in Graph Theory (1997)Google Scholar
  12. 12.
    Fabian, K., Thomas, M., Roger, W.: On the locality of bounded growth. In: Proceedings of the 24th Annual ACM symposium on Principles of Distributed Computing (PODC), pp. 60–68. ACM, New York (2005)Google Scholar
  13. 13.
    Marx, D.: A short proof of the NP-completeness of minimum sum interval coloring. Operations Research Letters 33(4), 382–384 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Trans. Parallel and Distributed Syst. 12(6), 529–543 (2001)CrossRefGoogle Scholar
  16. 16.
    Mynhardt, C.M., Broere, I.: Generalized colorings of graphs. In: Proceedings of the 11th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 583–594 (1985)Google Scholar
  17. 17.
    Panconesi, A., Srinivasan, A.: On the complexity of distributed network decomposition. J. Algorithms 20(2), 356–374 (1996)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pemmaraju, S.V., Pirwani, I.A.: Good quality virtual realization of unit ball graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 311–322. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Pemmaraju, S.V., Raman, R., Varadarajan, K.: Buffer minimization using max-coloring. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 562–571 (2004)Google Scholar
  21. 21.
    Shmueli, E., Feitelson, D.G.: Backfilling with look ahead to optimize the packing of parallel jobs. J. Parallel and Distributed Computing 65(9), 1090–1107 (1995)CrossRefGoogle Scholar
  22. 22.
    Stacho, J.: Complexity of Generalized Colourings of Chordal Graphs (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rajiv Gandhi
    • 1
  • Bradford GreeningJr.
    • 1
  • Sriram Pemmaraju
    • 2
  • Rajiv Raman
    • 3
  1. 1.Department of Computer ScienceRutgers University-CamdenCamden
  2. 2.Department of Computer ScienceUniversity of IowaIowa City, Iowa
  3. 3.Max-Planck Institute for InformatikSaarbrückenGermany

Personalised recommendations