Advertisement

An Exact Algorithm for Minimum Distortion Embedding

  • Fedor V. Fomin
  • Daniel Lokshtanov
  • Saket Saurabh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5911)

Abstract

Let G be an unweighted graph on n vertices. We show that an embedding of the shortest path metric of G into the line with minimum distortion can be found in time 5 n + o(n). This is the first algorithm breaking the trivial n!-barrier.

Keywords

Exact Algorithm Input Graph General Metrics Minimum Distortion Embedding Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bădoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings of general metrics into the line. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), ACM, pp. 225–233 (2005)Google Scholar
  2. 2.
    Bădoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Räcke, H., Ravi, R., Sidiropoulos, A.: Approximation algorithms for low-distortion embeddings into low-dimensional spaces. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 119–128. SIAM, Philadelphia (2005)Google Scholar
  3. 3.
    Badoiu, M., Indyk, P., Sidiropoulos, A.: Approximation algorithms for embedding general metrics into trees. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 512–521. ACM, SIAM (2007)Google Scholar
  4. 4.
    Cygan, M., Pilipczuk, M.: Faster Exact Bandwidth. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 101–109. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Feige, U.: Coping with the NP-hardness of the graph bandwidth problem. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 10–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Fellows, M.R., Fomin, F.V., Lokshtanov, D., Losievskaja, E., Rosamond, F.A., Saurabh, S.: Distortion is Fixed Parameter Tractable. In: Albers, S., et al. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 463–474. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and l\(_{\mbox{1}}\)-embeddings of graphs. Combinatorica 24, 233–269 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 10–33. IEEE, Los Alamitos (2001)Google Scholar
  9. 9.
    Kenyon, C., Rabani, Y., Sinclair, A.: Low distortion maps between point sets. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 272–280. ACM Press, New York (2004)Google Scholar
  10. 10.
    Linial, N.: Finite metric-spaces—combinatorics, geometry and algorithms. In: Proceedings of the International Congress of Mathematicians, Beijing, vol. III, pp. 573–586. Higher Ed. Press (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Daniel Lokshtanov
    • 1
  • Saket Saurabh
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations