Mediapedia: Mining Web Knowledge to Construct Multimedia Encyclopedia

  • Richang Hong
  • Jinhui Tang
  • Zheng-Jun Zha
  • Zhiping Luo
  • Tat-Seng Chua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5916)


In recent years, we have witnessed the blooming of Web 2.0 content such as Wikipedia, Flickr and YouTube, etc. How might we benefit from such rich media resources available on the internet? This paper presents a novel concept called Mediapedia, a dynamic multimedia encyclopedia that takes advantage of, and in fact is built from the text and image resources on the Web. The Mediapedia distinguishes itself from the traditional encyclopedia in four main ways. (1) It tries to present users with multimedia contents (e.g., text, image, video) which we believed are more intuitive and informative to users. (2) It is fully automated because it downloads the media contents as well as the corresponding textual descriptions from the Web and assembles them for presentation. (3) It is dynamic as it will use the latest multimedia content to compose the answer. This is not true for the traditional encyclopedia. (4) The design of Mediapedia is flexible and extensible such that we can easily incorporate new kinds of mediums such as video and languages into the framework. The effectiveness of Mediapedia is demonstrated and two potential applications are described in this paper.


Web Knowledge Multimedia Encyclopedia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deng, C., Xiaofei, H., Zhiwei, L., Wwei-Ying, M., Ji-Rong, W.: Hierarchical clustering of WWW image search results using visual, textual and link information. In: Proc. of ACM MM 2004, pp. 952–959 (2004)Google Scholar
  2. 2.
    Tat-Seng, C., Richang, H., Guangda, L., Jinhui, T.: From Text Question-Answering to Multimedia QA. To appear in ACM Multimedia Workshop on Large-Scale Multimedia Retrieval and Mining, LS-MMRM (2009)Google Scholar
  3. 3.
    Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38(2), 293–306 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Frey, B., Dueck, D.: Clustering by Passing Messages Between Data Points. Science 315(5814), 972 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Yangqing, J., Jingdong, W., Changshui, Z., Xian-Sheng, H.: Finding Image Exemplars Using Fast Sparse Affinity Propagation. In: ACM International Conference on Multimedia, ACM’MM 2008, Vancouver, BC, Canada (2008)Google Scholar
  6. 6.
    Shiren, Y., Tat-Seng, C., Jie, L.: Summarization Definition from Wikipedia. In: ACL-IJCNLP, Singapore, August 2-7 (2009)Google Scholar
  7. 7.
    Carey, S.: Two Strategies of Encyclopaedism. Pliny’s Catalogue of Culture: Art and Empire in the Natural History. Oxford University Press, Oxford (2003)Google Scholar
  8. 8.
    Tat-Seng, C., Jinhui, T., Richang, H., Haojie, L., Zhiping, L., Yantao, Z.: NUS-WIDE: A Real-World Web Image Databased From National University of Singapore. In: ACM International Conference on Image and Video Retrieval, Greece, July 8-10 (2009)Google Scholar
  9. 9.
    Meng, W., Xian-Sheng, H., Yan, S., Xun, Y., Shipeng, L., Hong-Jiang, Z.: Video Annotation by Semi-Supervised Learning with Kernel Density Estimation. In: ACM’MM (2006)Google Scholar
  10. 10.
    Rudi, C., Paul, V.: The Google Similarity Distance, or The Google Similarity Distance. IEEE Trans. Knowledge and Data Engineering 19(3), 370–383 (2007)CrossRefGoogle Scholar
  11. 11.
    Richang, H., Jinhui, T., Hung-Khoon, T., Shuicheng, Y., Chong-Wah, N., Tat-Seng, C.: Event Driven Summarization for Web Videos. To appear in ACM Multimedia Workshop on Social Media, WSM (2009)Google Scholar
  12. 12.
    Zheng-Jun, Z., Linjun, Y., Tao, M., Meng, W., Zengfu, W.: Visual Query Suggestion. To appear in ACM’MM, Beijing, China (2009)Google Scholar
  13. 13.
    Yan-Tao, Z., Ming, Z., Yang, S., Hartwig, A., Ulrich, B., Alessandro, B., Fernando, B., Tat-Seng, C.: Neven Hartmut: Tour the World: building a web-scale landmark recogntion engine. In: Proceedings of CVPR 2009, Miami, Florida, US, June 20-25 (2009)Google Scholar
  14. 14.
    Ding, C.H.Q.: A Similarity-Based Probability Model for Latent Semantic Indexing. In: Proc. of SIGIR (1999)Google Scholar
  15. 15.
    Haojie, L., Jinhui, T., Guangda, L., Tat-Seng, C.: Word2Image: Towards Visual Interpretation of Words. In: Proceedings of ACM’MM 2008 (2008)Google Scholar
  16. 16.
    Dumais, S.: Improving the retrieval of information from external sources. Behavior Research Methods, Instruments and Computers 232, 229–236 (1991)Google Scholar
  17. 17.
    Meng, W., Kuiyuan, Y., Xian-Sheng, H., Hong-Jiang, Z.: Visual Tag Dictionary: Interpreting Tags with Visual Words. To appear in ACM Multimedia Workshop on Web-Scale Multimedia Corpus (2009)Google Scholar
  18. 18.
    Jinhui, T., Shuicheng, Y., Richang, H., Guojun, Q., Tat-Seng, C.: Inferring Semantic Concepts from Community-Contributed Images and Noisy Tags. To appear in ACM’MM 2009 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Richang Hong
    • 1
  • Jinhui Tang
    • 1
  • Zheng-Jun Zha
    • 1
  • Zhiping Luo
    • 1
  • Tat-Seng Chua
    • 1
  1. 1.Computing 1Singapore

Personalised recommendations