The optimal provision of healthcare and public health services requires the synthesis of evidence from multiple disciplines. It is necessary to understand the genetic, environmental, behavioural and social determinants of disease and health-related states; to balance the effectiveness of interventions with their costs; to ensure the maximum safety and acceptability of interventions; and to provide fair access to care services for given populations. Ever expanding databases of knowledge and local health information, and the ability to employ computationally expensive methods, promises much for decisions to be both supported by best evidence and locally relevant. This promise will, however, not be realised without providing health professionals with the tools to make sense of this information rich environment and to collaborate across disciplines. We propose, as a solution to this problem, the e-Lab and Work Objects model as a sense-making platform for digital health economies - bringing together data, methods and people for timely health intelligence.


Health Intelligence Collaboration Work Objects e-Lab Digital Economy Health Economy Analysis Workbench 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cochrane, A.L.: Effectiveness and Efficiency. Random Reections on Health Services. Nuffield Provincial Hospitals Trust, London (1972)Google Scholar
  2. 2.
    Hersh, W.: Medical informatics improving health care through information. Journal of the American Medical Association 288(16), 1955–1958 (2002)CrossRefGoogle Scholar
  3. 3.
    AbouZahr, C., Boerma, T.: Health information systems: the foundations of public health. Bulletin of the World Health Organization 83, 578–583 (2005)Google Scholar
  4. 4.
    Hersh, W.: Health care information technology progress and barriers. Journal of the American Medical Association 292(18), 2273–2274 (2004)CrossRefGoogle Scholar
  5. 5.
    O‘Carroll, P., Yasnoff, W., Ward, E., Ripp, L., Martin, E.: Public Health Informatics and Information Systems. Springer, New York (2003)CrossRefGoogle Scholar
  6. 6.
    Hey, T., Trefethen, A.: The UK e-science core programme and the grid. Future Generation Computer Systems 18(8), 1017–1031 (2002)CrossRefMATHGoogle Scholar
  7. 7.
    Stockinger, H.: Dening the grid: a snapshot on the current view. The Journal of Supercomputing 42(1), 3–17 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)Google Scholar
  9. 9.
    Stevens, R., Robinson, A., Goble, C.: myGrid: personalised bioinformatics on the information grid. Bioinformatics 19(90001), 302–304 (2003)CrossRefGoogle Scholar
  10. 10.
    Fraser, M.: Virtual research environments: overview and activity. Ariadne (2005)Google Scholar
  11. 11.
    Chin Jr., G., Lansing, C.: Capturing and supporting contexts for scientic data sharing via the biological sciences collaboratory. In: Proceedings of the 2004 ACM conference on Computer supported cooperative work, pp. 409–418. ACM, New York (2004)CrossRefGoogle Scholar
  12. 12.
    Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The open provenance model. Technical Report, University of Southampton (2007)Google Scholar
  13. 13.
    De Roure, D., Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D., Fisher, P., Hull, D., Michaelides, D., Newman, D., et al.: Towards Open Science: The myExperiment approach. Concurrency and Computation: Practice and Experience (in press, 2009)Google Scholar
  14. 14.
    Lagoze, C., Van de Sompel, H., Johnston, P., Nelson, M., Sanderson, R., Warner, S.: Open Archives Initative Object Reuse and Exchange (OAI-ORE). Technical report, Open Archives Initative (2007), http://www.openarchives.org/ore/0.1/toc
  15. 15.
    Star, S., Griesemer, J.: Institutional ecology, translations and boundary objects: Amateurs and professionals in Berkeleys Museum of Vertebrate Zoology, 1907-39. Social studies of science, 387–420 (1989)Google Scholar
  16. 16.
    James, P., Leach, R., Kalamara, E., Shayeghi, M.: The worldwide obesity epidemic. Obesity 9(11s), 228S–233S (2001)CrossRefGoogle Scholar
  17. 17.
    Canoy, D., Buchan, I.: Challenges in obesity epidemiology. Obesity Reviews 8(s1), 1–11 (2007)CrossRefGoogle Scholar
  18. 18.
    Deldereld, M., Kitching, L., Smith, G., Hoyle, D., Buchan, I.: Shared Genomics: Accessible High Performance Computing for Genomic Medical Research. In: IEEE Fourth International Conference on eScience, 2008. eScience 2008, pp. 404–405 (2008)Google Scholar
  19. 19.
    Bates, D., Gawande, A.: Improving safety with information technology. New England Journal of Medicine 348(25), 2526–2534 (2003)CrossRefGoogle Scholar
  20. 20.
    Morabia, A. (ed.): A History of Epidemiologic Methods and Concepts. Birkhauser Verlag, Basel (2004)Google Scholar
  21. 21.
    Bishop, C.: Pattern recognition and machine learning. Springer, New York (2006)MATHGoogle Scholar
  22. 22.
    Unal, B., Critchley, J., Capewell, S., Liverpool, U.: IMPACT, a validated, comprehensive coronary heart disease model. Technical Report, University of Liverpool, United Kingdom (2006), http://www.liv.ac.uk/PublicHealth/sc/bua/IMPACT-Model-Appendices.pdf
  23. 23.
    O‘Keefe, C., Yung, M., Gu, L., Baxter, R.: Privacy-preserving data linkage protocols. In: Proceedings of the 2004 ACM workshop on Privacy in the electronic society, pp. 94–102. ACM, New York (2004)CrossRefGoogle Scholar
  24. 24.
    Elliot, M., Purdam, K., Smith, D.: Patient record data: Statistical disclosure control for grid based data access. In: Proceedings of the second international conference on e-Social Science (2006)Google Scholar
  25. 25.

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • John D. Ainsworth
    • 1
  • Iain E. Buchan
    • 1
  1. 1.School of Community Based MedicineUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom

Personalised recommendations