A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams

  • Sebastian Böcker
  • Falk Hüffner
  • Anke Truss
  • Magnus Wahlström
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5917)


Given two binary phylogenetic trees covering the same n species, it is useful to compare them by drawing them with leaves arranged side-by-side. To facilitate comparison, we would like to arrange the trees to minimize the number of crossings k induced by connecting pairs of identical species. This is the NP-hard Tanglegram Layout problem. By providing a fast transformation to the Balanced Subgraph problem, we show that the problem admits an O(2 k n 4) algorithm, improving upon a previous fixed-parameter approach with running time O(c k n O(1)) where c ≈ 1000. We enhance a Balanced Subgraph implementation based on data reduction and iterative compression with improvements tailored towards these instances, and run experiments with real-world data to show the practical applicability of this approach. All practically relevant (k ≤ 1000) Tanglegram Layout instances can be solved exactly within seconds. Additionally, we provide a kernel-like bound by showing how to reduce the Balanced Subgraph instances for Tanglegram Layout on complete binary trees to a size of O(k logk).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bansal, M.S., Chang, W.-C., Eulenstein, O., Fernández-Baca, D.: Generalized binary tanglegrams: Algorithms and applications. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS (LNBI), vol. 5462, pp. 114–125. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Baumann, F., Buchheim, C., Liers, F.: Exact crossing minimization in general tanglegrams. Technical Report zaik2009-581, Zentrum für Angewandte Informatik Köln (Mar 2009)Google Scholar
  3. 3.
    Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I., Wolff, A.: Drawing (complete) binary tanglegrams. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 324–335. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 457–469. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. In: Proc. of ACM Symposium on Theory of Computing (STOC 1983), pp. 246–251. ACM Press, New York (1983)CrossRefGoogle Scholar
  6. 6.
    Grötschel, M., Pulleyblank, W.R.: Weakly bipartite graphs and the max-cut problem. Oper. Res. Lett. 1(1), 23–27 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hüffner, F., Betzler, N., Niedermeier, R.: Optimal edge deletions for signed graph balancing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 297–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Nöllenburg, M., Holten, D., Völker, M., Wolff, A.: Drawing binary tanglegrams: An experimental evaluation. In: Proc. of Workshop on Algorithm Engineering and Experiments (ALENEX 2009), pp. 106–119. SIAM, Philadelphia (2009)Google Scholar
  9. 9.
    Page, R.D.M. (ed.): Tangled Trees: Phylogeny, Cospeciation, and Coevolution. University of Chicago Press, Chicago (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sebastian Böcker
    • 1
  • Falk Hüffner
    • 2
  • Anke Truss
    • 1
  • Magnus Wahlström
    • 3
  1. 1.Lehrstuhl für BioinformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Algorithms in Computational Genomics group, School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  3. 3.Max-Planck-Institut für Informatik, Department 1: Algorithms and ComplexitySaarbrückenGermany

Personalised recommendations