Two Edge Modification Problems without Polynomial Kernels

  • Stefan Kratsch
  • Magnus Wahlström
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5917)

Abstract

Given a graph G and an integer k, the Π Edge Completion/Editing/Deletion problem asks whether it is possible to add, edit, or delete at most k edges in G such that one obtains a graph that fulfills the property Π. Edge modification problems have received considerable interest from a parameterized point of view. When parameterized by k, many of these problems turned out to be fixed-parameter tractable and some are known to admit polynomial kernelizations, i.e., efficient preprocessing with a size guarantee that is polynomial in k. This paper answers an open problem posed by Cai (IWPEC 2006), namely, whether the Π Edge Deletion problem, parameterized by the number of deletions, admits a polynomial kernelization when Π can be characterized by a finite set of forbidden induced subgraphs. We answer this question negatively based on recent work by Bodlaender et al. (ICALP 2008) which provided a framework for proving polynomial lower bounds for kernelizability. We present a graph H on seven vertices such that \(\mathcal{H}\)-free Edge Deletion and H-free Edge Editing do not admit polynomial kernelizations, unless \(\mbox{NP}\subseteq \mbox{coNP}/\mbox{poly}\). The application of the framework is not immediate and requires a lower bound for a Not-1-in-3 SAT problem that may be of independent interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N.: Kernelization algorithms for d-hitting set problems. In: Dehne, et al. (eds.) [8], pp. 434–445Google Scholar
  2. 2.
    Bodlaender, H.L., Cai, L., Chen, J., Fellows, M.R., Telle, J.A., Marx, D.: IWPEC 2006. LNCS, vol. 4169. Springer, Heidelberg (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 635–646. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Brügmann, D., Komusiewicz, C., Moser, H.: On generating triangle-free graphs. Electronic Notes in Discrete Mathematics 32, 51–58 (2009)CrossRefGoogle Scholar
  6. 6.
    Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Applied Mathematics 154(13), 1824–1844 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Dehne, F., Sack, J.-R., Zeh, N. (eds.): WADS 2007. LNCS, vol. 4619. Springer, Heidelberg (2007)MATHGoogle Scholar
  9. 9.
    Díaz, J., Thilikos, D.M.: Fast fpt-algorithms for cleaning grids. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 361–371. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1998)MATHGoogle Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: STOC, pp. 133–142. ACM, New York (2008)Google Scholar
  13. 13.
    Guo, J.: Problem kernels for NP-complete edge deletion problems: Split and related graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Guo, J.: A more effective linear kernelization for cluster editing. Theoretical Computer Science 410(8-10), 718–726 (2009)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Guo, J., Uhlmann, J.: Kernelization and complexity results for connectivity augmentation problems. In: Dehne, et al [8], pp. 483–494Google Scholar
  16. 16.
    Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM Journal on Computing. 30(6), 1863–1920 (2000)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Applied Mathematics 113(1), 109–128 (2001)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. Graph Theory and Computing, pp. 183–217 (1972)Google Scholar
  19. 19.
    Sharan, R., Maron-Katz, A., Shamir, R.: CLICK and EXPANDER: a system for clustering and visualizing gene expression data. Bioinformatics 19(14), 1787–1799 (2003)CrossRefGoogle Scholar
  20. 20.
    Yap, C.-K.: Some consequences of non-uniform conditions on uniform classes. Theoretical Computer Science 26, 287–300 (1983)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stefan Kratsch
    • 1
  • Magnus Wahlström
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations