The Parameterized Complexity of Some Geometric Problems in Unbounded Dimension

  • Panos Giannopoulos
  • Christian Knauer
  • Günter Rote
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5917)


We study the parameterized complexity of the following fundamental geometric problems with respect to the dimension d:

i) Given n points in ℝ d , compute their minimum enclosing cylinder.

ii) Given two n-point sets in ℝ d , decide whether they can be separated by two hyperplanes.

iii) Given a system of n linear inequalities with d variables, find a maximum size feasible subsystem.

We show that (the decision versions of) all these problems are W[1]-hard when parameterized by the dimension d. Our reductions also give a n Ω(d)-time lower bound (under the Exponential Time Hypothesis).


parameterized complexity geometric dimension lower bounds minimum enclosing cylinder maximum feasible subsystem 2-linear separability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armaldi, E., Kann, V.: The complexity and approximability of finding maximum feasible subsystems of linear relations. Theoretical Computer Science 147, 181–210 (1995)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM J. Comput. 38(3), 899–921 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54(2), 317–331 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bremner, D., Chen, D., Iacono, J., Langerman, S., Morin, P.: Output-sensitive algorithms for tukey depth and related problems. Statistics and Computing 18(3), 259–266 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proc. 34th Annual ACM Symposium on Theory of Computing, pp. 250–257 (2002)Google Scholar
  6. 6.
    Cabello, S., Giannopoulos, P., Knauer, C., Marx, D., Rote, G.: Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. ACM Transactions on Algorithms (to appear, 2009)Google Scholar
  7. 7.
    Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. In: Proc. 19th Ann. ACM-SIAM Sympos. Discrete Algorithms, pp. 836–843 (2008)Google Scholar
  8. 8.
    Chan, T.M.: A (slightly) faster algorithm for Klee’s measure problem. In: Proc. 24th Annual Symposium on Computational Geometry, pp. 94–100 (2008)Google Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geometric problems. Computer Journal 51(3), 372–384 (2008)CrossRefGoogle Scholar
  11. 11.
    Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Langerman, S., Morin, P.: Covering things with things. Discrete & Computational Geometry 33(4), 717–729 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Megiddo, N.: On the complexity of polyhedral separability. Discrete & Computational Geometry 3, 325–337 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Megiddo, N.: On the complexity of some geometric problems in unbounded dimension. J. Symb. Comput. 10, 327–334 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Varadarajan, K., Venkatesh, S., Ye, Y., Zhang, J.: Approximating the radii of point sets. SIAM J. Comput. 36(6), 1764–1776 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Panos Giannopoulos
    • 1
  • Christian Knauer
    • 1
  • Günter Rote
    • 1
  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations